首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   30篇
化学工业   7篇
机械仪表   8篇
能源动力   3篇
水利工程   3篇
无线电   30篇
一般工业技术   105篇
自动化技术   2篇
  2020年   4篇
  2019年   5篇
  2018年   8篇
  2017年   4篇
  2016年   7篇
  2015年   11篇
  2014年   8篇
  2013年   25篇
  2012年   18篇
  2011年   12篇
  2010年   13篇
  2009年   10篇
  2008年   6篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   8篇
  1999年   3篇
  1997年   4篇
  1994年   1篇
  1993年   1篇
  1988年   2篇
  1985年   1篇
排序方式: 共有158条查询结果,搜索用时 15 毫秒
51.
We present the integration of a natural protein into electronic and optoelectronic devices by using silk fibroin as a thin film dielectric in an organic thin film field-effect transistor (OFET) ad an organic light emitting transistor device (OLET) structures. Both n- (perylene) and p-type (thiophene) silk-based OFETs are demonstrated. The measured electrical characteristics are in agreement with high-efficiency standard organic transistors, namely charge mobility of the order of 10(-2) cm(2)/Vs and on/off ratio of 10(4). The silk-based optolectronic element is an advanced unipolar n-type OLET that yields a light emission of 100nW.  相似文献   
52.
53.
The synthesis using the thermal decomposition of metal trifluoroacetates is being widely used to prepare oleate-capped lanthanide-doped upconverting NaYF(4):Er(3+)/Yb(3+) nanoparticles (Ln-UCNPs). These nanoparticles have no inherent aqueous dispersibility and inconvenient postsynthesis treatments are required to render them water dispersible. Here, we have developed a novel and facile approach to obtain water-dispersible, ligand-free, brightly upconverting Ln-UCNPs. We show that the upconversion luminescence is affected by the local environment of the lanthanide ions at the surface of the Ln-UCNPs. We observe a dramatic difference of the integrated upconverted red:green emission ratio for Ln-UCNPs dispersed in toluene compared to Ln-UCNPs dispersed in water. We can enhance or deactivate the upconversion luminescence by pH and H/D isotope vibronic control over the competitive radiative and nonradiative relaxation pathways for the red and green excited states. Direct biofunctionalization of the ligand-free, water-dispersible Ln-UCNPs will enable myriad new opportunities in targeting and drug delivery applications.  相似文献   
54.
The goal of this paper is introducing the citer-success-index (cs-index), i.e. an indicator that uses the number of different citers as a proxy for the impact of a generic set of papers. For each of the articles of interest, it is defined a comparison term—which represents the number of citers that, on average, an article published in a certain period and scientific field is expected to “infect”—to be compared with the actual number of citers of the article. Similarly to the recently proposed success-index (Franceschini et al. Scientometrics 92(3):621–6415, 2011), the cs-index allows to select a subset of “elite” papers. The cs-index is analyzed from a conceptual and empirical perspective. Special attention is devoted to the study of the link between the number of citers and cited authors relating to articles from different fields, and the possible correlation between the cs- and the success-index. Some advantages of the cs-index are that (i) it can be applied to multidisciplinary groups of papers, thanks to the field-normalization that it achieves at the level of individual paper and (ii) it is not significantly affected by self citers and recurrent citers. The main drawback is its computational complexity.  相似文献   
55.
Neural engineering provides promise for cell therapy by integrating the host brain with brain–machine‐interface technologies in order to externally modulate functions. Long‐term interfaces with the host brain remain a critical challenge due to insufficient graft cell survivability and loss of brain electrode sensitivity over time. Here, integrated neuron–electrode interfaces are developed on thin flexible and transparent silk films as brain implants. Mechanical properties and surface topography of silk films are optimized to promote cell survival and alignment of primary rat cortical cells. Compartmentalized neural cultures and co‐patterned electrode arrays are incorporated on the silk films with built‐in wire connections. Electrical stimulation via electrodes embedded in the films activated surrounding neurons to produce evoked calcium responses. In mice brains, silk film implants show conformal contact capable of modulating host brain cells with minimal inflammatory response and stable indwelling for weeks. The approach of combining cell therapy and brain electrodes could provide sustained functional interfaces with ex vivo control with spatial precision.  相似文献   
56.
57.
We review recent progress in a class of silicon‐based electronics that is capable of complete, controlled dissolution when immersed in water or bio‐fluids. This type of technology, referred to in a broader sense as transient electronics, has potential applications in resorbable biomedical devices, eco‐friendly electronics, environmental sensors, secure hardware systems and others. New results reported here include studies of the kinetics of hydrolysis of nanomembranes of single crystalline silicon in bio‐fluids and aqueous solutions at various pH levels and temperatures. Evaluations of toxicity using live animal models and test coupons of transient electronic materials provide some evidence of their biocompatibility, thereby suggesting potential for use in bioresorbable electronic implants.  相似文献   
58.
59.
Processing methods to control silk fibroin film biomaterial features   总被引:1,自引:1,他引:0  
Control of silk structural and morphological features is reported for fibroin protein films via all aqueous processing, with and without polyethylene oxide (PEO). Silk films with thicknesses from 500 nm to 50 μm were generated with controllable surface morphologies by employing soft-lithography surface patterning or by adjusting PEO concentrations. FTIR analysis indicated that water-annealing, used to cure or set the films, resulted in increased β-sheet and α-helix content within the films. Steam sterilization provided an additional control point by increasing β-sheet content, while reducing random coil and turn structures, yet retaining film transparency and material integrity. Increased PEO concentration used during processing resulted in decreased sizes of surface globule structures, while simultaneously increasing uniformity of these features. The above results indicate that both surface and bulk morphologies and structures can be controlled by adjusting PEO concentration. The combined tool set for controlling silk film geometry and structure provides a foundation for further study of novel silk film biomaterial systems. These silk film biomaterials have potential applicability for a variety of optical and regenerative medicine applications due to their optical clarity, impressive mechanical properties, slow degradability, and biocompatibility.  相似文献   
60.
Real-time characterization of the chemical and physical properties of individual aerosol particles is an important issue in environmental studies. A well-established way of accomplishing this task relies on the use of laser-induced fluorescence or laser ionization mass spectrometry. We describe here a simple approach aimed at experimentally verifying that single particles are indeed addressed. The approach has been tested with a system consisting of a series of aerodynamic lenses to form a beam of dye-doped particles aerosolized from a solution of known concentration with a medical nebulizer. Two independent spectral detection channels simultaneously measure the fluorescence signals generated in two different spectral regions by the passage of a mixture of two dye-doped particles through a focused laser beam in a vacuum chamber. Coincidence effects, arising from the simultaneous observation of both fluorescence emissions, can then be directly observed. Both dual-color fluorescence and pulse height distribution have been analyzed. As expected, the probability of single- or multiple-particle interaction strongly depends on the particle flux in the chamber, which is related to the concentration of particles in the nebulized solution. In our case, to achieve a two-particle coincidence smaller than 10%, a particle concentration lower than 1.2x10(5) particles/mL is required. Moreover, it was found that the experimental observations are in agreement with a simple mathematical model based on Poisson statistics. Although the results obtained refer to particle concentrations in solution, our approach can equally be applicable to experiments involving direct air sampling, provided that the number density of particles in air can be measured a priori, e.g., with a particle counter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号