首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   10篇
电工技术   1篇
化学工业   6篇
金属工艺   2篇
建筑科学   1篇
能源动力   3篇
轻工业   1篇
无线电   7篇
一般工业技术   4篇
冶金工业   5篇
自动化技术   21篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   8篇
  2018年   4篇
  2017年   4篇
  2016年   6篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2012年   3篇
  2011年   2篇
  2009年   1篇
  2007年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
  1981年   1篇
排序方式: 共有51条查询结果,搜索用时 62 毫秒
41.
A dual‐band dual‐polarized hybrid aperture‐cylindrical dielectric resonator antenna (CDRA) is examined in this article. Inverted regular pentagon shaped aperture is not only used to launch two radiating hybrid modes (HEM11δ and HEM12δ mode) in CDRA but also act as a radiator. Out of two frequency bands, the lower frequency band is linearly polarized while upper frequency band is the combination of both circular and linear polarization. A circular polarization (CP) characteristic in upper frequency band is created by loading quarter annular stub with microstrip line. LHCP/RHCP can easily be controlled by alternating the position of quarter annular stub. It is operating over two frequency ranges i.e. 2.48‐2.98 GHz and 4.66‐5.88 GHz with the fractional bandwidth 18.31% and 23.14% respectively. Axial ratio bandwidth (3‐dB) is approximately 8.78% (4.9‐5.35 GHz) in upper frequency band. The proposed antenna design is suitable WiMAX (2.5/5.5 GHz) and WLAN (2.5/5.5 GHz) applications.  相似文献   
42.
This article investigates a dual band multiple input multiple output (MIMO) cylindrical dielectric resonator antenna (cDRA) for WLAN and WiMAX applications. It consists of two symmetrical orthogonally placed radiators. Each radiator is excited through a narrow rectangular aperture with the help of a microstrip line. For higher mode excitation, the proposed structure uses dual segment DRA which apparently looks like stacked geometry. The aperture fed dielectric resonator works as a feed for upper cDRA to generate higher order mode. The presented radiator covers the band between 3.3‐3.8 GHz and 5‐5.7 GHz. The measured isolation is better than 20 dB in the desired band. The average gain and radiation efficiency achieved for the proposed antenna is 6.0 dBi and 85%, respectively at the operating frequency band. In the proposed geometry, broadside radiation patterns are achieved by exciting HEM11δ and HEM12δ modes in a stacked geometry. Different MIMO performance parameters (ECC, DG, MEG, and CCL) are also estimated and analyzed. The prototype of proposed antenna is fabricated and tested. The measured outcomes are in good accord with the simulated one.  相似文献   
43.
In this communication, a dielectric resonator based circularly polarized antenna is designed and investigated. A modified aperture is used to excite dual cylindrical dielectric resonator (CDR) blocks. Two important characteristics of the proposed radiator that makes it all the more attractive are as follows: (i) excitation of dual radiating modes that is, HEM11δ and TE01δ mode in cylindrical DR along with the support of dual‐band circularly polarized (CP) waves; (ii) arrangements of dual CDR blocks to reduce the Q‐factor which is useful to enhance the impedance bandwidth of both frequency bands. Fabrication as well as experimental measurement of the antenna prototype has been done for verifying simulation outcomes. This antenna design operates over dual frequency bands, that is, 5.01‐6.41 GHz and 7.3‐7.9 GHz with the fractional bandwidth of 24.73% and 9.39%, respectively. It supports CP waves over the frequency range 6.1‐6.5 GHz and 7.4‐7.8 GHz. The proposed antenna backs right‐hand circularly polarized (RHCP) radiation with an average gain of 4.5 dBi. These characteristics make it well fitted for WLAN, WiMAX (5.2/5.5/5.8 GHz), and downlink defense purpose satellite communication (7.2‐7.7 GHz).  相似文献   
44.
In this article, dual mode triple band hybrid cylindrical dielectric resonator antenna (CDRA) for different wireless applications is investigated. It is seen that annular ring shaped patch along with T‐shaped printed line behaves as a magnetic and electric dipole concurrently and create HE11δ and HE12δ mode in the proposed CDRA. Both of the hybrid modes radiate in broadside direction. The concept of hybrid antenna (the combination of annular ring patch and CDRA) is used to achieve triple‐band feature in the proposed antenna. Ansoft HFSS‐EM simulator is used to optimize the proposed antenna. Optimized simulated results have been practically confirmed by using the archetype of proposed antenna. The proposed radiator is applicable in three different frequency bands, that is, 2.24‐2.56 GHz, 3.28‐4.18 GHz, and 5.36‐5.8 GHz. It is appropriate for WLAN (2.4/5.8 GHz) and WiMAX (2.5/3.3/5.5 GHz) applications.  相似文献   
45.
A circularly polarized microstrip slot antenna with low radar cross-section (RCS) and high gain was designed using a metasurface composed of a \(6 \times 6\) array of corner-truncated square patches placed on top of the upper substrate. By optimizing the geometry of the metasurface patches and L-shaped feed of the proposed antenna, broadband RCS reduction and improved overall antenna performance were achieved. A prototype antenna was fabricated, and the results showed that the proposed antenna exhibited an impedance bandwidth of 29.08 % in the frequency band of 4.29–5.75 GHz. The designed antenna achieved good 3-dB axial ratio (AR) bandwidth of about 30.18 % with center frequency of 5.3 GHz, and gain in the broadside direction of 9.9 dBi. Using the designed metasurface, remarkable monostatic RCS reduction was obtained in the frequency range from 4 to 13 GHz.  相似文献   
46.
ABSTRACT

In this article, asymmetrical mirror-imaged monopole antenna comprises a rectangular patch with tuneable stub and supported with modified ground structure (MGS) is investigated. The proposed antenna is characterised for dual band dual polarised (DBDP) radiations and can operate at 2.45 GHz for Wi-Fi and WLAN systems (2.4–2.485 GHz) and 5.45 GHz for WLAN band (WLAN band: 5.2–5.8 GHz) with the corresponding polarisations. A rectangular patch integrated with tuneable stub and a pair of asymmetrical inverted L-shaped slots positioned at ground plane is responsible for circularly polarised higher band; while a parasitic patch is created due to slotting of a mirror-imaged stub from the extended ground plane which is accountable for lower frequency band. The fabricated prototype shows that the measured Impedance bandwidths (VSWR < 2) are 350 and 1770 MHz for lower and higher frequency bands, respectively. The measured axial ratio bandwidth (AR < 3 dB) is yielded as 1450 MHz centred at 5.44 GHz for higher frequency band. The peak gains are measured as 4.3 and 4.15 dB for lower and higher frequency band, respectively. For the prototype antenna, substantial 3-dB beamwidth is found along with good cross polarisation suppression.  相似文献   
47.
In the present work, marble dust particulate filled silicon bronze (SiBr) alloy composites were fabricated in five different weight percentages (0 wt.%, 2.5 wt.%, 5 wt.%, 7.5 wt.% and 10 wt.% of MD). The main focus of this work was to study their physical and dry sliding wear behavior for rolling elements. The void contents of the particulate filled alloy composites decreased with the increase in marble dust content in the composites up to 7.5 wt.% of marble dust (MD). Similarly, the hardness of the filled composites showed an increasing trend with the increase in hard marble dust content in the alloy composites i.e. 119.25 Hv to 181.5 Hv for 0 wt.% to 7.5 wt.% addition of MD particulates. However, both the void content and hardness showed inferior properties in higher weight percentages of marble dust content. The Taguchi design of experimental (L 25 orthogonal array) technique was implemented to find out the dry specific wear rate of the unfilled and marble dust filled SiBr alloy composites. A scanning electron microscopy (SEM) study was performed to study the wear mechanism of the worn composites along with atomic force microscopic (AFM) analysis to predict the surface profile of the worn particulate filled alloy composites.  相似文献   
48.
49.
A SYBR Green? I-based real-time multiplexed PCR assay was developed targeting invA and spvB for the detection of Salmonella strains in shellfish after both hns and invA genes were identified in all Salmonella strains. Simultaneously, the 16S rRNA gene was used as a PCR internal amplification control (IAC). All 89 Salmonella strains tested in this study exhibited amplification of invA, whereas only 21 (23.6 %) were PCR positive for spvB. The sensitivity of detection of all three targeted genes was 1 ng, which is equivalent to approximately 105 colony-forming unit (CFU) of Salmonella enterica. The analysis showed specific PCR products that were identified by reproducible melt temperature profiles (invA, 84.27?±?1.7 °C; spvB, 88.76?±?1.0 °C; and 16S rRNA gene, 87.16?±?0.8 °C).The sensitivity of detection was 10 pg purified DNA (invA) or 105?CFU in 1 mL pure culture of S. enterica ATCC 14028. The above molecular detection method for Salmonella strains was successfully applied to the oyster homogenates (food matrix). An initial inoculum of 106 and 102?CFU Salmonella in 1 ml seeded oyster tissue homogenate was detected by multiplexed PCR for all three genes after 5 and 24 h of enrichment, respectively. Natural oysters isolated from Gulf of Mexico during the winter months exhibited negative PCR amplification results suggesting the absence of Salmonella. In contrast to conventional PCR, real-time multiplex PCR assay developed in this study is rapid and sensitive and will help Interstate Shellfish Sanitation Conference undertake appropriate measures to monitor Salmonella in oysters, thereby preventing disease outbreaks and consequently protecting consumer health.  相似文献   
50.
Hydrogel beads are emerging as alternate adsorbent material for the batch or continuous column treatment of dye wastewater. Polysaccharide-based gel beads are preferred for their uniform shape and size, large specific surface area, and easy separation by filtration and subsequent reuse. In this work, we prepare and rheologically characterize UV-active κ-carrageenan/TiO2 beads for the adsorption and degradation of dyes. The 3–4 mm sized nanocomposite beads are formed by the extrusion of κ-carrageenan/TiO2 gel solution in salt solutions. The maximum increase in modulus was observed with the addition of 1% w/v TiO2 to κ-carrageenan and subsequent crosslinking with mixed salt of KCl and CaCl2. κ-carrageenan/TiO2 beads crosslinked by mixed salt of KCl and CaCl2 have higher adsorption capacity, as compared to beads crosslinked with single salt of KCl. The kinetic study indicated the chemisorption of Methylene Blue on the bead surface. κ-carrageenan/TiO2 beads showed higher degradation for Methylene Blue and Nile Blue A than Rhodamine B in 5 and 50 ppm each multicomponent dye systems under UV irradiation. The κ-carrageenan/TiO2 beads could form a porous column for the selective adsorption of positively charged dyes from a multicomponent dye system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号