首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   17篇
  国内免费   1篇
化学工业   86篇
金属工艺   4篇
机械仪表   4篇
建筑科学   4篇
能源动力   12篇
轻工业   13篇
水利工程   2篇
石油天然气   4篇
无线电   13篇
一般工业技术   19篇
冶金工业   9篇
原子能技术   1篇
自动化技术   16篇
  2023年   1篇
  2022年   8篇
  2021年   12篇
  2020年   10篇
  2019年   9篇
  2018年   14篇
  2017年   14篇
  2016年   12篇
  2015年   4篇
  2014年   11篇
  2013年   25篇
  2012年   12篇
  2011年   16篇
  2010年   10篇
  2009年   6篇
  2008年   4篇
  2007年   5篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1993年   1篇
  1990年   1篇
排序方式: 共有187条查询结果,搜索用时 31 毫秒
71.
Dynamically vulcanized thermoplastic elastomer based on Nitrile butadiene-rubber (NBR)/PVC with functionalized single-walled carbon nanotubes (f-SWNTs) and non-functionalized single-walled carbon nanotubes (SWNTs) were prepared using a brabender internal mixer. Effects of two types of SWNTs (functionalized and non-functionalized) on morphology and mechanical properties of NBR/PVC blends were studied. Results showed that the mechanical properties of NBR/PVC/SWNTs nanocomposites improved with the increasing of SWNTs content and in particular with the increase of f-SWNTs content. Moreover, the enhancement of mechanical properties of NBR/PVC blends reinforced with functionalized SWNT was higher than that of NBR/PVC blends with non-functionalized SWNT. Dispersion of SWNTs and morphology of NBR/PVC/SWNT nanocomposites were determined by scanning electron microscopy and transmission electron microscopy (TEM) techniques. TEM images illustrated that f-SWNTs were dispersed uniformly in NBR/PVC matrix while non-functionalized SWNTs showed much aggregation. Dynamic mechanical thermal analysis of NBR/PVC/SWNTs nanocomposites was also studied. The outcomes indicated that in the case of f-SWNTs, the intensity of tan ?? peak was lower than that in the case of non-functionalized SWNTs. Meanwhile, the intensity of tan ?? peak reduced when the content of f-SWNTs was increased.  相似文献   
72.
The caffeic acid derivatives including neochlorogenic acid (3-COA), cryptochlorogenic acid (4-CQA), chlorogenic acid (5-CQA) and caffeic acid (CA) have been characterised in Gundelia tournefortii using reference compounds, chemical, spectral evidences and chromatographic data. In addition, the total phenolic content and chlorogenic acid were measured in the leaf, hull-less seed, and skin extracts of this herb by the Folin–Ciocalteu reagent and high performance liquid chromatography (HPLC), respectively. The sample analysis was carried out on a C18 column with 5% (v/v) aqueous acetic acid and methanol as the mobile phase, under gradient elution at ambient temperature, at 325 nm. The amount of chlorogenic acid in the leafs (at the flowering stage and after it) and hull-less seed were 984, 466 and 199 mg per 100 g dry plant sample and the total phenolic content in their dry extract were 128.4, 103.8 and 76.3 μg/mg as CGA equivalent, respectively.  相似文献   
73.
The effects of grain size and grain orientation on substructure in Fe–31Mn–3Al–3Si TWIP steel at a true strain of 0.06 were investigated. The results of the TEM observations indicated that where the grain size was 18.4 µm, the dislocations structure showed orientation dependence so that the mixture of both planar and tangled dislocations structure can be found in the deformed structure before the mechanical twinning initiation. Regardless of the grain orientation, however, the dislocation entanglements were mainly observed in the case of 2.1 µm grain size. Additionally, the reason for the suppression of the mechanical twinning as a result of the grain refinement at higher strains was described by the change of dislocations structure during initial stages of deformation.  相似文献   
74.
For the first time, martensite treatment was used to fabricate an ultrafine-grained (UFG) twinning-induced plasticity (TWIP) steel. The effects of cold rolling with 70 pct reduction at the liquid nitrogen temperature and subsequently annealing at 973 K (700 °C) for 5 to 20 minutes on the microstructure and mechanical properties of Fe-22Mn-0.4C-1.5Al-1Si TWIP steel were investigated. The results showed that a fully recrystallized UFG TWIP steel with a mean grain size of about 400 to 600 nm can be produced by the designed martensite treatment. The UFG TWIP steel exhibited high yield and tensile strengths and relatively high ductility.  相似文献   
75.
The morphological and rheological properties of thermoplastic elastomer nanocomposites (TPE nanocomposites) were studied using different viscosities of polypropylene (PP) and ethylene‐propylene‐diene monomer (EPDM) rubber content (20, 40, 60 wt%). The components, namely EPDM, PP, Cloisite 15A, and maleic anhydride‐modified PP as compatibilizer, were compounded by a one‐step melt mixing process in a laboratory internal mixer. The structure of the nanocomposites was characterized with X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, and rheometry in small amplitude oscillatory shear. The distribution state of the clay between the two phases (PP and EPDM) was found to be dependent on the viscosity ratio of PP to EPDM. In the nanocomposites prepared based on low viscosity PP (LVP) and EPDM, the clay was mostly dispersed into the PP phase and the size of the dispersed rubber particles decreased in comparison with unfilled but otherwise similar blends. However, the dispersed elastomer droplet size in the high viscosity PP (HVP) blends containing 40 and 60% EPDM increased with the introduction of the clay. For TPE nanocomposites, the dependence of the storage modulus (G′) on angular frequency (ω) followed a clear nonterminal behavior. The increase in the storage modulus and the decrease in the terminal zone slope of the elastic modulus curve were found to be larger in the LVP nanocomposite in comparison with the HVP sample. The yield stress of nanoclay‐filled blends prepared with LVP increased more than that of HVP samples. The tensile modulus improved for all nanocomposites but a higher percentage of increase was observed in the case of LVP samples. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   
76.
In this work, several cycles of homogenization heat treatments were employed to improve continuous-annealing furnace roller fractures at Mobarakeh Steel Company. Previous studies revealed that roller fractures were caused by sigma phase embrittlement and an increase of precipitations in the microstructure. Therefore, impact samples were prepared from failed rollers and homogenization treatments were carried out at temperatures ranging from 950 to 1100 °C in increments of 50 °C for 2 h. After cooling the samples in different mediums (furnace, air, oil and water), the impact energy was experimentally determined. In order to investigate the microstructures, the sigma phase and precipitation contents, and fractured surfaces, optical microscopy metallography, X-ray and SEM examinations were performed respectively on fractured samples. The results of these investigations indicate that homogenization treatment at 1100 °C for 2 h, followed by cooling in air, resulted in a significant increase in impact energy, a decrease in sigma phase and other precipitation contents, and produced a ductile fracture surface.  相似文献   
77.
Recent theories of bifurcation and chaos are used to analyze the dynamic behavior of the UNIPOL process for the production of polyethylene in the gas phase using the Ziegler‐Natta catalyst. Dynamic behavior covers wide regions of the design and operating parameters domain of this industrially important unit. A conventional proportional‐integral (PI) controller was implemented to stabilize the desired operating point on the unstable steady‐state branch. The presence of the PI controller stabilized the desired unstable steady‐state regions to a certain range of catalyst injection rate, by contrast, it is found out that the controlled process can go through a period doubling sequence leading to chaotic strange attractors. The practical implications of this analysis can be very serious, since chaos is shown to exist right near the desired operating point where high polyethylene production rates can be achieved  相似文献   
78.
The two‐phase model developed for the UNIPOL polyethylene process is improved by introducing polymer diffusion resistance, this means modelling of polyethylene fluidized bed reactors has been examined on two levels, at small scale of individual polymer particle, and macroscale of the whole reactor. The model utilizes the multigrain model that accounts for the reaction rate at catalyst surface to explore the static and dynamic bifurcation behavior of the fluidized bed catalytic reactor. Detailed bifurcation diagrams are developed and analyzed for the effect of polymer growth factor and Thiele modulus (the significance of the porous medium transport resistance is characterized by Thiele modulus) on reactor dense phase monomer concentration and reactor temperature as well as polyethylene production rate and reactor single pass conversion for the safe temperature region. The observations reveal that significant diffusion resistance to monomer transport exists, and this can mask the intrinsic rate constants of the catalyst. The investigation of polymer growth factor indicates that, the nascent stage of polymerization is highly gas phase diffusion influenced. Intraparticle temperature gradients would appear to be negligible under most normal operating conditions.  相似文献   
79.
Nitrate nitrogen (NO3--N) from agricultural activities and in industrial wastewater has become the main source of groundwater pollution, which has raised widespread concerns, particularly in arid and semi-arid river basins with little water that meets relevant standards. This study aimed to investigate the performance of spatial and non-spatial regression models in modeling nitrate pollution in a semi-intensive farming region of Iran. To perform the modeling of the groundwater's NO3--N concentration, both natural and anthropogenic factors affecting groundwater NO3--N were selected. The results of Moran's I test showed that groundwater nitrate concentration had a significant spatial dependence on the density of wells, distance from streams, total annual precipitation, and distance from roads in the study area. This study provided a way to estimate nitrate pollution using both natural and anthropogenic factors in arid and semi-arid areas where only a few factors are available. Spatial regression methods with spatial correlation structures are effective tools to support spatial decision-making in water pollution control.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号