A new class of nanostructured hybrid materials is developed by direct grafting of a model thiophene-based organic dye on the surface of 3C-SiC/SiO2 core/shell nanowires. TEM-EDX analysis reveals that the carbon distribution is more spread than it would be, considering only the SiC core size, suggesting a main contribution from C of the oligothiophene framework. Further, the sulfur signal found along the treated wires is not detected in the as-grown samples. In addition, the fluorescent spectra are similar for the functionalized nanostructures and T3Pyr in solution, confirming homogeneous molecule grafting on the nanowire surface. Chemical and luminescence characterizations confirm a homogeneous functionalization of the nanowires. In particular, the fluorophore retains its optical properties after functionalization. 相似文献
Tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL), a member of the TNF superfamily, interacts with its functional death receptors (DRs) and induces apoptosis in a wide range of cancer cell types. Therefore, TRAIL has been considered as an attractive agent for cancer therapy. However, many cancers are resistant to TRAIL-based therapies mainly due to the reduced expression of DRs and/or up-regulation of TRAIL pathway-related anti-apoptotic proteins. Compounds that revert such defects restore the sensitivity of cancer cells to TRAIL, suggesting that combined therapies could help manage neoplastic patients. In this article, we will focus on the TRAIL-sensitizing effects of natural products and synthetic compounds in colorectal cancer (CRC) cells and discuss the molecular mechanisms by which such agents enhance the response of CRC cells to TRAIL. 相似文献
Type 1 diabetes is characterized by insulin deficiency, type 2 by both insulin deficiency and insulin resistance: in both conditions, hyperglycaemia is accompanied by an increased cardiovascular risk, due to increased atherosclerotic plaque formation/instabilization and impaired collateral vessel formation. An important factor in these phenomena is the Vascular Endothelial Growth Factor (VEGF), a molecule produced also by Vascular Smooth Muscle Cells (VSMC). We aimed at evaluating the role of high glucose on VEGF-A(164) synthesis and secretion in VSMC from lean insulin-sensitive and obese insulin-resistant Zucker rats (LZR and OZR). In cultured aortic VSMC from LZR and OZR incubated for 24 h with d-glucose (5.5, 15 and 25 mM) or with the osmotic controls l-glucose and mannitol, we measured VEGF-A(164) synthesis (western, blotting) and secretion (western blotting and ELISA). We observed that: (i) d-glucose dose-dependently increases VEGF-A(164) synthesis and secretion in VSMC from LZR and OZR (n = 6, ANOVA p = 0.002-0.0001); (ii) all the effects of 15 and 25 mM d-glucose are attenuated in VSMC from OZR vs. LZR (p = 0.0001); (iii) l-glucose and mannitol reproduce the VEGF-A(164) modulation induced by d-glucose in VSMC from both LZR and OZR. Thus, glucose increases via an osmotic mechanism VEGF synthesis and secretion in VSMC, an effect attenuated in the presence of insulin resistance. 相似文献
Previous studies aimed at exploring the SAR of C2-functionalized S-DABOs demonstrated that the substituent at this position plays a key role in the inhibition of both wild-type RT and drug-resistant enzymes, particularly the K103N mutant form. The introduction of a cyclopropyl group led us to the discovery of a potent inhibitor with picomolar activity against wild-type RT and nanomolar activity against many key mutant forms such as K103N. Despite its excellent antiviral profile, this compound suffers from a suboptimal ADME profile typical of many S-DABO analogues, but it could, however, represent a promising candidate as an anti-HIV microbicide. In the present work, a new series of S-DABO/N-DABO derivatives were synthesized to obtain additional SAR information on the C2-position and in particular to improve ADME properties while maintaining a good activity profile against HIV-1 RT. In vitro ADME properties (PAMPA permeation, water solubility, and metabolic stability) were also experimentally evaluated for the most interesting compounds to obtain a reliable indication of their plasma levels after oral administration. 相似文献
Predictive and semipredictive models for viscosity calculation are currently needed and highly appreciated. Models developed for halogenated refrigerants (HR) and based on Corresponding States (CS) are leading to a prediction accuracy comparable to that of specifically developed models. In the present work, using recently published, highly accurate viscosity dedicated equations, it has been verified that viscosity conforms to a two-parameter CS model is then developed, based on Teja and coworker's three-parameter CS structure. Two fluids of the same family are taken for reference, and the reduced viscosity of a third fluid is obtained in reduced P,T variables. At first the Pitzer acentric factor is proposed as a third parameter, then it is substituted with a temperature-dependent function fitted on saturated viscosity data. The prediction accuracy of the model is comparable to that of the reference fluid equations and, considering its predictive nature, it is a satisfactory tool for the needs of technical applications. 相似文献
UV-curable systems based on the copolymerisation of a typical acrylic resin with a low amount of a fluorinated monomer (<1%, w/w) were used for the protection of wood panels. In the presence of the additives, the bulk properties and the adhesion of the acrylic films were unchanged, while a strong modification of the surface was obtained. The quality aspects and the chemical resistance of the coatings applied to the wood panels were also enhanced. 相似文献
Summary: The success of the use of layered silicates in polymer nanocomposites, to improve physical and chemical properties is strictly related to a deeper knowledge of the mechanistic aspects on which the final features are grounded. This work shows the temperature induced structural rearrangements of nanocomposites based on poly[ethylene‐co‐(vinyl acetate)] (EVA) intercalated‐organomodified clay (at 3–30 wt.‐% silicate addition) which occur in the range between 75 and 350 °C. In situ high temperature X‐ray diffraction (HT‐XRD) studies have been performed under both nitrogen and air to monitor the modifications of the nanocomposite structure at increasing temperatures under inert/oxidative atmosphere. Heating between 75 and 225 °C, under nitrogen or air, causes the layered silicate to migrate towards the nanocomposite surface and to increase its interlayer distance. The degradation of both the clay organomodifier and the VA units of the EVA polymer seems to play a key role in driving the evolution of the silicate phase in the low temperature range. The structural modifications of the nanocomposites in the high temperature range (250–350 °C), depended on the atmosphere, either inert or oxidizing, in which the samples were heated. Heating under nitrogen led to deintercalation and thus a decrease of the silicate interlayer space, whereas exfoliation was the main process under air leading to an increase of the silicate interlayer space.
Heat induced structural modification of EVA‐clay nanocomposite under nitrogen and air. 相似文献