首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3656篇
  免费   215篇
  国内免费   12篇
电工技术   54篇
综合类   2篇
化学工业   746篇
金属工艺   140篇
机械仪表   188篇
建筑科学   67篇
矿业工程   2篇
能源动力   134篇
轻工业   304篇
水利工程   20篇
石油天然气   8篇
无线电   694篇
一般工业技术   744篇
冶金工业   367篇
原子能技术   28篇
自动化技术   385篇
  2024年   13篇
  2023年   25篇
  2022年   60篇
  2021年   120篇
  2020年   88篇
  2019年   67篇
  2018年   115篇
  2017年   115篇
  2016年   123篇
  2015年   100篇
  2014年   143篇
  2013年   232篇
  2012年   215篇
  2011年   253篇
  2010年   188篇
  2009年   194篇
  2008年   188篇
  2007年   155篇
  2006年   132篇
  2005年   95篇
  2004年   92篇
  2003年   90篇
  2002年   57篇
  2001年   93篇
  2000年   72篇
  1999年   59篇
  1998年   151篇
  1997年   114篇
  1996年   78篇
  1995年   61篇
  1994年   62篇
  1993年   51篇
  1992年   33篇
  1991年   40篇
  1990年   23篇
  1989年   28篇
  1988年   23篇
  1987年   11篇
  1986年   13篇
  1985年   7篇
  1984年   12篇
  1983年   13篇
  1982年   12篇
  1981年   9篇
  1980年   11篇
  1979年   5篇
  1977年   8篇
  1976年   13篇
  1974年   3篇
  1973年   3篇
排序方式: 共有3883条查询结果,搜索用时 0 毫秒
51.
Zheng  Jun-Yun  Ko  Ren-Song 《Wireless Networks》2015,21(1):297-314

Large scale wireless sensor networks raise many challenges in the design of efficient and effective routing algorithm due to their complexity and hardware constraints. However, the scalability challenge may be mitigated from a macroscopic perspective. One example is the distributed De la Garza iteration (DDLGI) algorithm for global routing load-balancing, based on a set of partial differential equations iteratively solved by the De la Garza method. We theoretically analyze the parallelism of DDLGI and illustrate that the region of interest may impact the degree of parallelism and error. Furthermore, though DDLGI always converges, the slow convergence and long-range information exchange problems may lead to excess energy consumption in communication. Thus, we propose various enhanced De la Garza routing (E-DLGR) algorithms to alleviate the energy consumption problem by which nodes may exchange less information and only need to exchange information with closer nodes to complete each iteration. Our theoretical analysis and simulation results show that the proposed E-DLGR algorithms may have less transmission overhead, thus further reducing energy consumption, and converge faster while still maintaining adequate accuracy.

  相似文献   
52.
The leaky bucket is a popular method that can regulate traffic into an ATM broadband network. This paper examines a simple but innovative modification that would also provide priority to access the network. This is done by requiring cells of different classes to obtain different numbers of tokens before receiving their services. As a step further, a dynamic scheme can be used in which the tokens allocated to each class are changed according to the traffic load. Performance evaluations of mean cell delays and cell loss probabilities are obtained to provide insight into the behaviour of the system and to provide guideline for furture design.  相似文献   
53.
A high-performance adder is one of the most critical components of a processor which determines its throughput, as it is used in the ALU, the floating-point unit, and for address generation in case of cache or memory access. In this paper, low-power design techniques for various digital circuit families are studied for implementing high-performance adders, with the objective to optimize performance per watt or energy efficiency as well as silicon area efficiency. While the investigation is done using 100 MHz, 32 b carry lookahead (CLA) adders in a 0.6 μm CMOS technology, most techniques presented here can also be applied to other parallel adder algorithms such as carry-select adders (CSA) and other energy efficient CMOS circuits. Among the techniques presented here, the double pass-transistor logic (DPL) is found to be the most energy efficient while the single-rail domino and complementary pass-transistor logic (CPL) result in the best performance and the most area efficient adders, respectively. The impact of transistor threshold voltage scaling on energy efficiency is also examined when the supply voltage is scaled from 3.5 V down to 1.0 V  相似文献   
54.
In this article, the silicon oxide (SiOx) planarization technique is presented to fabricate the 650-nm resonant-cavity light-emitting diodes (RCLEDs). The performances of RCLEDs are characterized by forward voltage, light output power, external quantum efficiency, emission spectrum, and dynamic response. As a result, the device with the SiOx-planarized layer exhibits a low operating voltage of 2.3 V at 20 mA, a maximum light output power of 304 μW at 15 mA, and the best external quantum efficiency of 3% at 1.2 mA. In addition, the SiOx-planarized device exhibits temperature insensitivity as compared to the device without it. The RCLED with a 30-μm diameter shows the maximum 3 dB frequency bandwidth of 275 MHz at a driving current of 40 mA. Finally, the RCLED with a SiOx-planarized layer shows a clear eye-opening feature as operating at 100 Mbit/s at 20 mA. These results indicate that such LEDs are excellent candidates for use in high-speed short-reach plastic optical fiber communications.  相似文献   
55.
In this paper, corporate-feed circularly polarized microstrip array antennas are studied. The antenna element is a series-feed slot-coupled structure. Series feeding causes sequential rotation effect at the element level. Antenna elements are then used to form the subarray by applying sequential rotation to their feeding. Arrays having 4, 16, and 64 elements were made. The maximum achieved gains are 15.3, 21, and 25.4 dBic, respectively. All arrays have less than 15 dB return loss and 3 dB axial ratio from 10 to 13 GHz. The patterns are all quite symmetrical.  相似文献   
56.
Upconversion nanoparticles (UCNPs) have been integrated with photonic platforms to overcome the intrinsically low quantum efficiency limit of upconversion luminescence (UCL). However, platforms based on thin films lack transferability and flexibility, which hinders their broader and more practical application. A plasmonic structure is developed that works as a multi‐functional platform for flexible, transparent, and washable near‐infrared (NIR)‐to‐visible UCL films with ultra‐strong UCL intensity. The platform consists of dielectric microbeads decorated with plasmonic metal nanoparticles on an insulator/metal substrate. Distinct improvements in NIR confinement, visible light extraction, and boosted plasmonic effects for upconversion are observed. With weak NIR excitation, the UCL intensity is higher by three orders of magnitude relative to the reference platform. When the microbeads are organized in a square lattice array, the functionality of the platform can be expanded to wearable and washable UCL films. The platform can be transferred to transparent, flexible, and foldable films and still emit strong UCL with a wide viewing angle.  相似文献   
57.
58.
Park  C.S. Park  C.K. Ko  S.J. 《Electronics letters》2008,44(5):337-338
In the scalable video coding (SVC) standard, a simple inter-layer intra prediction (ILIP) method has been adopted to reduce the bit rate of scalable video sequences. Proposed is an improved ILIP method by generalising the original one adopted in the SVC. Experimental results show that the proposed method can reduce bit rates by 4.1 to 5.9%, compared with the original one, while average PSNR is not decreased.  相似文献   
59.
This paper presents a survey of non-fungible tokens (NFTs), including its history, technologies, standards, and challenges in their development. An NFT is a unique digital entity that is created and maintained using blockchain technology. Each NFT is identified using a unique smart contract and a token ID, so the whole history of the NFT can be globally identified by its address and token ID. The blockchain information indelibly identifies the current owner of any asset, previous owners, and original creator. NFTs are used to manage ownership of digital and physical assets and cryptocurrencies. The prices of popular NFTs have become very high, and the market for them has overheated in recent years. NFT technology and its ecosystem have evolved since Quantum, the first NFT, was stored in the Namecoin blockchain. Ethereum has become the main platform for NFT projects because it provides support for smart contracts. Currently, almost all NFT projects are launched on the Ethereum blockchain. NFT has two major standards called ERC-721 and ERC-1155, which have had important functions in the development of NFT. Starting with these two standards, other standards for NFT continue to emerge; they expand the functionality of NFT such as by adding utility. However, NFT is a very early technology, and it has not been long after the NFT concept was created and used. So there are several challenges for further improving NFT technology, in terms of usability, interoperability, and evolution. This paper presents a survey of NFT, including its history, technologies, standards, and challenges of NFT.  相似文献   
60.
We investigated the low temperature reactions between the Ti films created by the ionized sputtering process and the (001) single crystal silicon wafers using high resolution transmission electron microscopy and x-ray diffractometry. We observed that the amorphous Ti-Si intermixed layer is formed at the Ti-Si interface whose thickness increased with the thickness of the deposited Ti films. The amorphous interlayer grew upon annealing treatments at the temperatures below 450°C. We also observed that the crystallization of the amorphous interlayer occurred upon annealing at 500°C. The first formed phase is Ti5Si3 in contact with Ti films, which is epitaxial with Ti films. Upon further annealing at 500°C, the Ti5Si4 phase and C49 TiSi2 phase formed in the regions close to Ti films and Si substrates, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号