首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   16篇
电工技术   2篇
化学工业   56篇
建筑科学   5篇
矿业工程   1篇
能源动力   1篇
轻工业   32篇
水利工程   3篇
无线电   13篇
一般工业技术   18篇
冶金工业   5篇
原子能技术   1篇
自动化技术   28篇
  2023年   5篇
  2022年   17篇
  2021年   12篇
  2020年   5篇
  2019年   7篇
  2018年   2篇
  2017年   3篇
  2016年   9篇
  2015年   13篇
  2014年   10篇
  2013年   7篇
  2012年   9篇
  2011年   12篇
  2010年   13篇
  2009年   9篇
  2008年   6篇
  2007年   7篇
  2006年   2篇
  2005年   3篇
  2003年   4篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1993年   1篇
  1989年   1篇
  1982年   1篇
排序方式: 共有165条查询结果,搜索用时 15 毫秒
81.
Today, the primary aluminum production is based on two processes: (a) the Bayer process and (b) the Hall–Heroult process. Both processes deal with several economic and environmental drawbacks. The production of aluminum is an energy intensive process, consuming 53–61 GJ/t of aluminum, while huge amount of red mud and gaseous emissions are inevitably produced through the whole process. The utilization of a new family of solvents called ionic liquids (ILs) in the primary aluminum production is the subject of this paper, which examines the possibility of dissolving metallurgical alumina, hydrated alumina, and bauxites in 1-ethyl-3-methyl-imidazolium hydrogen sulfate ([Emim]HSO4). The results show that hydrated alumina can be dissolved relatively easily at 210°C, forming a melt that contains 9% w/w of dissolved alumina, which is higher than the alumina content in Hall–Heroult melts. Bauxites can also be directly dissolved in this IL with iron presenting higher dissolution than aluminum, while silicon dissolution is negligible.  相似文献   
82.
The optical and structural properties of cadmium and lead sulfide nanocrystals deposited on mesoporous TiO2 substrates via the successive ionic layer adsorption and reaction method were comparatively investigated by reflectance, transmittance, micro-Raman and photoluminescence measurements. Enhanced interfacial electron transfer is evidenced upon direct growth of both CdS and PbS on TiO2 through the marked quenching of their excitonic emission. The optical absorbance of CdS/TiO2 can be tuned over a narrow spectral range. On the other side PbS/TiO2 exhibits a remarkable band gap tunability extending from the visible to the near infrared range, due to the distinct quantum size effects of PbS quantum dots. However, PbS/TiO2 suffers from severe degradation upon air exposure. Degradation effects are much less pronounced for CdS/TiO2 that is appreciably more stable, though it degrades readily upon visible light illumination.  相似文献   
83.
84.
We present our investigations into the direct laser writing of a novel germanium-containing hybrid sol–gel photosensitive material for optical applications at micro scale. We employ this material in the fabrication of photonic micro-structures, such as aspheric lenses and prisms; these are well-shaped and provided good optical performance. The material exhibits good transparency and structurability, and three-dimensional structures with sub-100 nm resolution are achieved. We demonstrate the suitability of the direct laser writing method for the rapid production of custom shaped microoptical components. Since germanium glasses are widely used in fiber optics, the combination of direct laser writing with this specially designed, functional material opens an interesting way in fabricating structures for controlling light flow.  相似文献   
85.
Addition of graphene oxide (GO) to poly(l ‐lactic acid) (PLLA) offers an alternative approach for tuning its crystallinity, improving its mechanical properties and transfusing an antibacterial behavior. GO/PLLA nanocomposites were prepared by melt extrusion, thus avoiding the potentially toxic, for biomedical applications, residue of organic solvents. Fourier transform infrared spectroscopy verified the formation of intermolecular hydrogen bonds. Using differential scanning calorimetry experiments concerning the isothermal crystallization of PLLA and PLLA containing 0.4 wt% GO, a two‐dimensional disc‐like geometry of crystal growth was determined, whereas at 125 and 130 °C the nanocomposite developed three‐dimensional spherulitic growth. Higher crystallization rate constant values suggest that the incorporation of 0.4 wt% GO accelerated the crystallization of PLLA. The lowest crystallization half‐time for PLLA was observed at 115 °C, while at 110 °C GO caused its highest decrease, accompanied by the highest increase in melting enthalpy (ΔHm), as compared to that of PLLA, after completion of isothermal crystallization. Their ΔHm values increased with Tic, whereas multiple melting peaks transited to a single one with increasing Tic. GO improved the PLLA thermal stability, tensile strength and Young's modulus. Incorporation of 0.8 wt% GO endowed PLLA with another potential application as a biomaterial since the derived composite presented good thermomechanical properties and effective prohibition of Escherichia coli bacteria attachment and proliferation. This effect was more prominent under simulated sunlight exposure than in the dark. The preparation method did not compromise the intrinsic properties of GO. © 2020 Society of Chemical Industry  相似文献   
86.
Indoor air quality (IAQ) is an important consideration for health and well-being as people spend most of their time indoors. Multi-disciplinary interest in IAQ is growing, resulting in more empirical research, especially in affordable housing settings, given disproportionate impacts on vulnerable populations. Conceptually, there is little coherency among these case studies; they traverse diverse spatial scales, indoor and outdoor environments, and populations, making it difficult to implement research findings in any given setting. We employ a social-ecological systems (SES) framework to review and categorize existing interventions and other literature findings to elucidate relationships among spatially and otherwise diverse IAQ factors. This perspective is highly attentive to the role of agency, highlighting individual, household, and organizational behaviors and constraints in managing IAQ. When combined with scientific knowledge about the effectiveness of IAQ interventions, this approach favors actionable strategies for reducing the presence of indoor pollutants and personal exposures.  相似文献   
87.
88.
The antioxidant and antimicrobial activity of four Thymus species (boissieri, longicaulis, leucospermus, and ocheus) extracts were determined. Two methods (Rancimat and malondialdehyde by high-performance liquid chromatography) were used to measure the antioxidant action in comparison with common commercial antioxidants, including butylated hydroxytoluene and alpha-tocopherol. The extracts that presented high antioxidant activity were encapsulated in liposomes and their antioxidant action was again estimated. Thermal-oxidative decomposition of the samples (pure liposomes and encapsulating extracts) was studied using the differential scanning calorimetry method. The modification of the main transition temperature for the lipid mixture and the splitting of the calorimetric peak in the presence of the antioxidants were also demonstrated by differential scanning calorimetry. All extracts showed antioxidant and antimicrobial activities. Some extracts showed superior or equal antioxidant activity to alpha-tocopherol. When the extracts were encapsulated in liposomes, their antioxidant as well as antimicrobial activities proved to be superior from the same extracts in pure form.  相似文献   
89.
90.
The hematopoietic system relies on regulation of both metabolism and autophagy to maintain its homeostasis, ensuring the self-renewal and multipotent differentiation potential of hematopoietic stem cells (HSCs). HSCs display a distinct metabolic profile from that of their differentiated progeny, while metabolic rewiring from glycolysis to oxidative phosphorylation (OXPHOS) has been shown to be crucial for effective hematopoietic differentiation. Autophagy-mediated regulation of metabolism modulates the distinct characteristics of quiescent and differentiating hematopoietic cells. In particular, mitophagy determines the cellular mitochondrial content, thus modifying the level of OXPHOS at the different differentiation stages of hematopoietic cells, while, at the same time, it ensures the building blocks and energy for differentiation. Aberrations in both the metabolic status and regulation of the autophagic machinery are implicated in the development of hematologic malignancies, especially in leukemogenesis. In this review, we aim to investigate the role of metabolism and autophagy, as well as their interconnections, in normal and malignant hematopoiesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号