全文获取类型
收费全文 | 88篇 |
免费 | 1篇 |
专业分类
综合类 | 1篇 |
化学工业 | 8篇 |
机械仪表 | 1篇 |
能源动力 | 1篇 |
轻工业 | 13篇 |
水利工程 | 2篇 |
无线电 | 16篇 |
一般工业技术 | 13篇 |
冶金工业 | 26篇 |
原子能技术 | 2篇 |
自动化技术 | 6篇 |
出版年
2024年 | 1篇 |
2023年 | 2篇 |
2021年 | 2篇 |
2020年 | 1篇 |
2019年 | 2篇 |
2017年 | 4篇 |
2016年 | 2篇 |
2015年 | 2篇 |
2013年 | 2篇 |
2012年 | 3篇 |
2011年 | 6篇 |
2010年 | 5篇 |
2009年 | 8篇 |
2008年 | 5篇 |
2007年 | 2篇 |
2006年 | 2篇 |
2005年 | 3篇 |
2004年 | 1篇 |
2003年 | 1篇 |
2002年 | 2篇 |
2001年 | 3篇 |
2000年 | 3篇 |
1999年 | 2篇 |
1998年 | 5篇 |
1997年 | 8篇 |
1996年 | 3篇 |
1993年 | 4篇 |
1982年 | 2篇 |
1981年 | 1篇 |
1978年 | 1篇 |
1927年 | 1篇 |
排序方式: 共有89条查询结果,搜索用时 15 毫秒
41.
Peak capacity production (i.e., peak capacity per separation run time) is substantially improved for gas chromatography-time-of-flight mass spectrometry (GC-TOFMS) and applied to the fast separation of complex samples. The increase in peak capacity production is achieved by selecting appropriate experimental conditions based on theoretical modeling of on-column band broadening, and by reducing the injection pulse width. Modeling to estimate the on-column band broadening from experimental parameters provided insight for the potential of achieving GC separations in the absence of off-column band broadening, i.e., the additional band broadening not due to the on-column separation process. To optimize GC-TOFMS separations collected with a commercial instrumental platform, off-column band broadening from injection and detection needed to be significantly reduced. Specifically for injection, a commercially available thermal modulator is adapted and applied (referred to herein as thermal injection) to provide a narrow injection pulse, while the TOFMS provided a data collection rate of 500 Hz, initially averaged to 100 Hz for data storage. The use of long, relatively narrow open tubular capillary columns and a 30 °C/min programming rate were explored for GC-TOFMS, specifically a 20 m, 100 μm inner diameter (i.d.) capillary column with a 0.4 μm film thickness to benefit column capacity, operated slightly below the optimal average linear gas velocity (at ~2 mL/min, due to the flow rate constraint of the TOFMS). Standard autoinjection with a 1:100 split resulted in an average peak width of ~1.2 s, hence a peak capacity production of 50 peaks/min. Metabolites in the headspace of urine were sampled by solid-phase microextraction (SPME), followed by thermal injection and a ~7 min GC separation (with a ~6 min separation time window), producing ~660 ms peak widths on average, resulting in a total peak capacity of ~550 peaks (at unit resolution) and a peak capacity production of ~90 peaks/min (~2-fold improvement relative to standard autoinjection with the 1:100 split). This total peak capacity production achieved is equivalent to, or greater than, that currently utilized in metabolomics studies using GC/MS, but with much slower separations, on the order of 40 to 60 min, corresponding to a 5-fold or greater GC/MS analysis throughput rate. 相似文献
42.
Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry coupled with rapid chemometric analysis were used to identify chemical differences in metabolite extracts isolated from yeast cells either metabolizing glucose (repressed (R) cells) via fermentation or metabolizing ethanol by respiration (derepressed (DR) cells). Principal component analysis (PCA) followed by parallel factor analysis (PARAFAC) in concert with the LECO ChromaTOF software located and identified the differences in composition between the two types of cell extracts and provided a reliable ratio of the metabolite concentrations. In this report, we demonstrate the analytical method developed to provide relatively rapid analysis of three selective mass channels (m/z 73, 205, 387), although in principle all collected mass channels could be analyzed. Twenty-six metabolites that differentiate repressed cells from derepressed cells were identified. The DR/R ratio of metabolite concentrations ranged from 0.02 for glucose to 67 for trehalose. The average biological variation of the sample extracts was 31%. This analysis demonstrates the utility and benefit of using PCA combined with PARAFAC and ChromaTOF software on extremely complex samples to derive useful information from complex three-dimensional chromatographic data objectively and relatively rapidly. 相似文献
43.
The effect of sampling time in the context of growth conditions on a dynamic metabolic system was investigated in order to assess to what extent a single sampling time may be sufficient for general application, as well as to determine if useful kinetic information could be obtained. A wild type yeast strain (W) was compared to a snf1Delta mutant yeast strain (S) grown in high-glucose medium (R) and in low-glucose medium containing ethanol (DR). Under these growth conditions, different metabolic pathways for utilizing the different carbon sources are expected to be active. Thus, changes in metabolite levels relating to the carbon source in the growth medium were anticipated. Furthermore, the Snf1 protein kinase complex is required to adapt cellular metabolism from fermentative R conditions to oxidative DR conditions. So, differences in intracellular metabolite levels between the W and S yeast strains were also anticipated. Cell extracts were collected at four time points (0.5, 2, 4, 6 h) after shifting half of the cells from R to DR conditions, resulting in 16 sample classes (WR, WDR, SR, SDR) x (0.5, 2, 4, 6 h). The experimental design provided time course data, so temporal dependencies could be monitored in addition to carbon source and strain dependencies. Comprehensive two-dimensional (2D) gas chromatography coupled to time-of-flight mass spectrometry (GC x GC-TOFMS) was used with discovery-based data mining algorithms ( Anal. Chem. 2006, 78, 5068-5075 (ref 1); J. Chromatogr., A 2008, 1186, 401-411 (ref 2)) to locate regions within the 2D chromatograms (i.e., metabolites) that provided chemical selectivity between the 16 sample classes. These regions were mathematically resolved using parallel factor analysis to positively identify the metabolites and to acquire quantitative results. With these tools, 51 unique metabolites were identified and quantified. Various time course patterns emerged from these data, and principal component analysis (PCA) was utilized as a comparison tool to determine the sources of variance between these 51 metabolites. The effect of sampling time was investigated with separate PCA analyses using various subsets of the data. PCA utilizing all of the time course data, averaged time course data, and each individual time point data set independently were performed to discern the differences. For the yeast strains examined in the current study, data collection at either 4 or 6 h provided information comparable to averaged time course data, albeit with a few metabolites missing using a single sampling time point. 相似文献
44.
45.
46.
Loïc Mervant Marie Tremblay-Franco Maïwenn Olier Emilien Jamin Jean-Francois Martin Lidwine Trouilh Charline Buisson Nathalie Naud Claire Maslo Cécile Héliès-Toussaint Edwin Fouché Emmanuelle Kesse-Guyot Serge Hercberg Pilar Galan Mélanie Deschasaux-Tanguy Mathilde Touvier Fabrice Pierre Laurent Debrauwer Francoise Guéraud 《Molecular nutrition & food research》2023,67(5):2200432
47.
Andrea Wangorsch Anuja Kulkarni Annette Jamin Jelena Spiric Julia Brcker Jens Brockmeyer Vera Mahler Natalia Blanca‐Lpez Marta Ferrer Miguel Blanca Maria Torres Paqui Gomez Joan Bartra Alba García‐Moral María J. Goikoetxea Stefan Vieths Masako Toda Gianni Zoccatelli Stephan Scheurer 《Molecular nutrition & food research》2020,64(19)
48.
N. J. Burnett S. G. Hinch N. N. Bett D. C. Braun M. T. Casselman S. J. Cooke A. Gelchu S. Lingard C. T. Middleton V. Minke‐Martin C. F. H. White 《河流研究与利用》2017,33(1):3-15
Effective dam management requires an understanding of the ecological impact of a facility and its operations on individual fish and fish populations. Traversing high flows downstream of dams is an energetically challenging activity that could influence survival and spawning success following passage. Carryover effects, however, are an underappreciated consequence of dam passage that have been overlooked by researchers and natural resource managers. We conducted a large‐scale management experiment to determine if the operation of dam attraction flows could be changed to reduce high sockeye salmon Oncorhynchus nerka mortality following passage and increase spawning success. We tested two flow conditions: (i) a baseline condition—currently used by managers—that released high attraction flows directly adjacent to the entrance to a vertical‐slot fishway and (ii) an alternative condition that released attraction flows 10 m away from the fishway entrance to reduce the flows fish swim through while approaching the passage structure. We tagged 637 sockeye salmon with telemetry tags to monitor dam passage, post‐passage survival to spawning grounds and spawning success under the two flow conditions. Validated fish counters at the exit of the fishway and on spawning grounds were used to generate population level estimates of survival to spawning grounds. Individuals exposed to baseline flow conditions spent two times longer recovering from dam passage and exhibited 10% higher mortality following passage than those exposed to alternative flows. Release of alternative flows for 10 days assisted approximately 550 fish (or 3% of total spawners) in reaching spawning grounds. Once on spawning grounds, female spawning success was strongly influenced by individual spawning characteristics (longevity and date of arrival on spawning grounds) and not dam flow condition. Our findings highlight a cost‐effective solution that decreases mortality following passage simply by altering the location of dam flow releases and not reductions in discharge. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
49.
Anne Bordron Marie Morel Cristina Bagacean Maryvonne Dueymes Pierre Pochard Anne Harduin-Lepers Christophe Jamin Jacques-Olivier Pers 《International journal of molecular sciences》2021,22(7)
Autoimmune disease development depends on multiple factors, including genetic and environmental. Abnormalities such as sialylation levels and/or quality have been recently highlighted. The adjunction of sialic acid at the terminal end of glycoproteins and glycolipids is essential for distinguishing between self and non-self-antigens and the control of pro- or anti-inflammatory immune reactions. In autoimmunity, hyposialylation is responsible for chronic inflammation, the anarchic activation of the immune system and organ lesions. A detailed characterization of this mechanism is a key element for improving the understanding of these diseases and the development of innovative therapies. This review focuses on the impact of sialylation in autoimmunity in order to determine future treatments based on the regulation of hyposialylation. 相似文献
50.
Constrained mirror placement on the Internet 总被引:2,自引:0,他引:2
Cronin E. Jamin S. Cheng Jin Kurc A.R. Raz D. Shavitt Y. 《Selected Areas in Communications, IEEE Journal on》2002,20(7):1369-1382
Web content providers and content distribution network (CDN) operators often set up mirrors of popular content to improve performance. Due to the scale and decentralized administration of the Internet, companies have a limited number of sites (relative to the size of the Internet) where they can place mirrors. We formalize the mirror placement problem as a case of constrained mirror placement, where mirrors can only be placed on a preselected set of candidates. We study performance improvement in terms of client round-trip time (RTT) and server load when clients are clustered by the autonomous systems (AS) in which they reside. Our results show that, regardless of the mirror placement algorithm used, for only a surprisingly small range of values there is an increase in the number of mirror sites (under the constraint) effective in reducing the client to server RTT and server load. In this range, we show that greedy placement performs the best. 相似文献