首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49645篇
  免费   2488篇
  国内免费   156篇
电工技术   708篇
综合类   65篇
化学工业   10593篇
金属工艺   2136篇
机械仪表   3241篇
建筑科学   1101篇
矿业工程   25篇
能源动力   2111篇
轻工业   3887篇
水利工程   271篇
石油天然气   88篇
武器工业   2篇
无线电   7834篇
一般工业技术   10663篇
冶金工业   3881篇
原子能技术   658篇
自动化技术   5025篇
  2024年   50篇
  2023年   570篇
  2022年   870篇
  2021年   1484篇
  2020年   1069篇
  2019年   1176篇
  2018年   1429篇
  2017年   1413篇
  2016年   1750篇
  2015年   1294篇
  2014年   2088篇
  2013年   3006篇
  2012年   3265篇
  2011年   3889篇
  2010年   2814篇
  2009年   2921篇
  2008年   2811篇
  2007年   2185篇
  2006年   2031篇
  2005年   1723篇
  2004年   1571篇
  2003年   1513篇
  2002年   1329篇
  2001年   1134篇
  2000年   996篇
  1999年   928篇
  1998年   1557篇
  1997年   991篇
  1996年   803篇
  1995年   557篇
  1994年   461篇
  1993年   406篇
  1992年   290篇
  1991年   274篇
  1990年   258篇
  1989年   241篇
  1988年   205篇
  1987年   168篇
  1986年   119篇
  1985年   115篇
  1984年   92篇
  1983年   63篇
  1982年   38篇
  1981年   39篇
  1980年   30篇
  1979年   31篇
  1978年   30篇
  1977年   38篇
  1976年   61篇
  1973年   20篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
We introduce a pixel‐structured scintillator realized on a flexible polymeric substrate and demonstrate its feasibility as an X‐ray converter when it is coupled to photosensitive elements. The sample was prepared by filling Gd2O2S:Tb scintillation material into a square‐pore‐shape cavity array fabricated with polyethylene. For comparison, a sample with the conventional continuous geometry was also prepared. Although the pixelated geometry showed X‐ray sensitivity of about 58% compared with the conventional geometry, the resolving power was improved by about 70% above a spatial frequency of 3 mm?1. The spatial frequency at 10% of the modulation‐transfer function was about 6 mm?1.  相似文献   
992.
We report on the spectral tunability of white light by localized surface plasmon (LSP) effect in a colour converting hybrid device made of CdSe/ZnS quantum dots (QDs) integrated on InGaN/GaN blue light-emitting diodes (LEDs). Silver (Ag) nanoparticles (NPs) are mixed with QDs for generating LSP effect. When the plasmon absorption of Ag NPs is synchronized to the QW emission at 448 nm, the NPs selectively absorb the blue light and subsequently enhance the QD emission. Using this energy transfer scheme, the (xy) chromaticity coordinates of the hybrid white LED was tuned from (0.32, 0.17) to (0.43, 0.26), and thereby generated warm white light emission with correlated colour temperature (CCT) around 1800 K. Moreover, a 47% enhancement in the external quantum efficiency (EQE) was realized.  相似文献   
993.
Engineering electrode nanostructures is critical in developing high‐capacity, fast rate‐response, and safe Li‐ion batteries. This study demonstrates the synthesis of orthorhombic Nb2O5@Nb4C3Tx (or @Nb2CTx) hierarchical composites via a one‐step oxidation —in flowing CO2 at 850 °C —of 2D Nb4C3Tx (or Nb2CTx) MXene. The composites possess a layered architecture with orthorhombic Nb2O5 nanoparticles decorated uniformly on the surface of the MXene flakes and interconnected by disordered carbon. The composites have a capacity of 208 mAh g?1 at a rate of 50 mA g?1 (0.25 C) in 1–3 V versus Li+/Li, and retain 94% of the specific capacity with 100% Coulombic efficiency after 400 cycles. The good electrochemical performances could be attributed to three synergistic effects: (1) the high conductivity of the interior, unoxidized Nb4C3Tx layers, (2) the fast rate response and high capacity of the external Nb2O5 nanoparticles, and (3) the electron “bridge” effects of the disordered carbon. This oxidation method was successfully extended to Ti3C2Tx and Nb2CTx MXenes to prepare corresponding composites with similar hierarchical structures. Since this is an early report on producing this structure, there is much room to push the boundaries further and achieve better electrochemical performance.  相似文献   
994.
Lithium–sulfur (Li–S) batteries are promising energy storage systems due to their large theoretical energy density of 2600 Wh kg?1 and cost effectiveness. However, the severe shuttle effect of soluble lithium polysulfide intermediates (LiPSs) and sluggish redox kinetics during the cycling process cause low sulfur utilization, rapid capacity fading, and a low coulombic efficiency. Here, a 3D copper, nitrogen co‐doped hierarchically porous graphitic carbon network developed through a freeze‐drying method (denoted as 3D Cu@NC‐F) is prepared, and it possesses strong chemical absorption and electrocatalytic conversion activity for LiPSs as highly efficient sulfur host materials in Li–S batteries. The porous carbon network consisting of 2D cross‐linked ultrathin carbon nanosheets provides void space to accommodate volumetric expansion upon lithiation, while the Cu, N‐doping effect plays a critical role for the confinement of polysulfides through chemical bonding. In addition, after sulfuration of Cu@NC‐F network, the in situ grown copper sulfide (CuxS) embedded within CuxS@NC/S‐F composite catalyzes LiPSs conversion during reversible cycling, resulting in low polarization and fast redox reaction kinetics. At a current density of 0.1 C, the CuxS@NC/S‐F composites' electrode exhibits an initial capacity of 1432 mAh g?1 and maintains 1169 mAh g?1 after 120 cycles, with a coulombic efficiency of nearly 100%.  相似文献   
995.
Recombination via subgap trap states is considered a limiting factor in the development of organometal halide perovskite solar cells. Here, the impact of active layer crystallinity on the accumulated charge and open‐circuit voltage (Voc) in solar cells based on methylammonium lead triiodide (CH3NH3PbI3, MAPI) is demonstrated. It is shown that MAPI crystallinity can be systematically tailored by modulating the stoichiometry of the precursor mix, where small quantities of excess methylammonium iodide (MAI) improve crystallinity, increasing device Voc by ≈200 mV. Using in situ differential charging and transient photovoltage measurements, charge density and charge carrier recombination lifetime are determined under operational conditions. Increased Voc is correlated to improved active layer crystallinity and a reduction in the density of trap states in MAPI. Photoluminescence spectroscopy shows that an increase in trap state density correlates with faster carrier trapping and more nonradiative recombination pathways. Fundamental insights into the origin of Voc in perovskite photovoltaics are provided and it is demonstrated why highly crystalline perovskite films are paramount for high‐performance devices.  相似文献   
996.
Multicasting is a useful communication method in wireless mesh networks (WMNs). Many applications in WMNs require efficient and reliable multicast communications, i.e., high delivery ratio with low overhead among a group of recipients. In spite of its significance, little work has been done on providing such multicast service in multi-channel WMNs. Traditional multicast protocols for wireless and multi-hop networks tend to assume that all nodes, each of which is equipped with a single interface, collaborate on the same channel. This single-channel assumption is not always true, as WMNs often provide nodes with multiple interfaces to enhance performance. In multi-channel and multi-interface (MCMI) WMNs, the same multicast data must be sent multiple times by a sender node if its neighboring nodes operate on different channels. In this paper, we try to tackle the challenging issue of how to design a multicast protocol more suitable for MCMI WMNs. Our multicast protocol builds multicast paths while inviting multicast members, and tries to allocate the same channel to neighboring members in a bottom-up manner. By unifying fixed channels of one-hop multicast neighbors, the proposed algorithm can improve the performance such as reducing multicast data transmission overhead and delay, while managing a successful delivery ratio. In order to prove such expectation on the performance, we have implemented and evaluated the proposed solution on the real testbed having the maximum 24 nodes, each of which is equipped with two IEEE 802.11a Atheros WLAN cards.  相似文献   
997.
Metal‐assisted chemical etching (MacEtch) has shown tremendous success as an anisotropic wet etching method to produce ultrahigh aspect ratio semiconductor nanowire arrays, where a metal mesh pattern serves as the catalyst. However, producing vertical via arrays using MacEtch, which requires a pattern of discrete metal disks as the catalyst, has often been challenging because of the detouring of individual catalyst disks off the vertical path while descending, especially at submicron scales. Here, the realization of ordered, vertical, and high aspect ratio silicon via arrays by MacEtch is reported, with diameters scaled from 900 all the way down to sub‐100 nm. Systematic variation of the diameter and pitch of the metal catalyst pattern and the etching solution composition allows the extraction of a physical model that, for the first time, clearly reveals the roles of the two fundamental kinetic mechanisms in MacEtch, carrier generation and mass transport. Ordered submicron diameter silicon via arrays with record aspect ratio are produced, which can directly impact the through‐silicon‐via technology, high density storage, photonic crystal membrane, and other related applications.  相似文献   
998.
A new method for measuring the effective complex relative permittivity of a reflecting surface is presented. The approach is based on the two-ray model. We derive an equation of a circle representing the complex reflection coefficient which relates the incidence angle, frequency, and received power from the path gain using the two-ray model. The intersection point of three such circles at different heights, while maintaining the same incidence angle, yields the correct complex reflection coefficient value. By measuring the received power for both the vertical and horizontal polarizations, the relative permittivity of the surface can be determined. The technique is validated using computer simulation, as well as field measurements of typical terrain surfaces, such as asphalt, grass, and bare soil. A major advantage of this method is that it obviates the need to use antennas with a narrow beam pattern  相似文献   
999.
Inkjet and transfer printing processes are combined to easily form patterned poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films as top anodes of all solution–processed inverted polymer light emitting diodes (PLEDs) on rigid glass and flexible plastic substrates. An adhesive PEDOT:PSS ink is formulated and fully customizable patterns are obtained using the inkjet printing process. In order to transfer the patterned PEDOT:PSS films, adhesion properties at interfaces during multistep transfer printing processes are carefully adjusted. The transferred PEDOT:PSS film on the plastic substrates shows not only a sheet resistance of 260.6 Ω/□ and a transmittance of 92.1% at 550 nm wavelength but also excellent mechanical flexibility. The PLEDs with spin‐coated functional layers sandwiched between the transferred PEDOT:PSS top anodes and inkjet‐printed Ag bottom cathodes are fabricated. The fabricated PLEDs on the plastic substrates show a high current efficiency of 10.4 cd A?1 and high mechanical stability. It is noted that because both Ag and PEDOT:PSS electrodes can be patterned with a high degree of freedom via the inkjet printing process, highly customizable PLEDs with various pattern sizes and shapes are demonstrated on the glass and plastic substrates. Finally, with all solution process, a 5 × 7 passive matrix PLED array is demonstrated.  相似文献   
1000.
We have studied the use of lasers for modifying the surface properties of silicon to improve its wettability and adhesion characteristics. Using a 4th harmonic Nd:YAG (λ = 266 nm, pulse) laser, the wettability and adhesion characteristics of the silicon surfaces have been enhanced by laser irradiation. It was found that laser surface treatment of silicon modified the surface energy. By the contact angle measurement, using distilled water, the wetting characteristics of silicon after the laser irradiation show a decrease in the contact angle and a change in the surface chemical composition. In the case of the laser-treated silicon surface, laser direct writing of copper lines has been achieved through pyrolytic decomposition of copper formate by using a focused Ar+ laser beam (λ = 514.5 nm, continuous wave (CW)) on the silicon substrates. The deposited lines and surface chemical compositions were measured by energy dispersive x-ray (EDX), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), and surface profiler (Alpha Step 500, San Jose, CA) to examine the cross section of deposited copper lines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号