首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   295篇
  免费   15篇
电工技术   2篇
化学工业   91篇
金属工艺   1篇
机械仪表   4篇
建筑科学   8篇
矿业工程   1篇
能源动力   7篇
轻工业   45篇
水利工程   1篇
无线电   26篇
一般工业技术   45篇
冶金工业   50篇
自动化技术   29篇
  2023年   7篇
  2022年   17篇
  2021年   19篇
  2020年   12篇
  2019年   13篇
  2018年   8篇
  2017年   5篇
  2016年   15篇
  2015年   5篇
  2014年   9篇
  2013年   23篇
  2012年   16篇
  2011年   22篇
  2010年   10篇
  2009年   8篇
  2008年   13篇
  2007年   11篇
  2006年   9篇
  2005年   7篇
  2004年   5篇
  2003年   7篇
  2002年   3篇
  2000年   6篇
  1999年   1篇
  1998年   15篇
  1997年   11篇
  1996年   6篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1988年   3篇
  1985年   1篇
  1984年   1篇
  1980年   2篇
  1979年   2篇
  1977年   4篇
  1976年   2篇
  1975年   1篇
  1971年   1篇
  1965年   2篇
排序方式: 共有310条查询结果,搜索用时 125 毫秒
21.
Spider silk has been investigated for decades due to the intriguing mechanical and also biomedical properties of the silk fibers. Previously, it has been shown that recombinant silk proteins can also be processed into other morphologies. Here, we characterized scaffolds made of the recombinant spider silk protein eADF4(C16) concerning their surface interactions with fibroblasts. Studies of BALB/3T3 cells on hydrogels and films made of eADF4(C16) showed low cell adhesion without observable duplication. Electro‐spun non‐woven scaffolds made of eADF4(C16), however, enabled both their adhesion and proliferation. Since eADF4(C16) lacks specific motifs for cell attachment, fibroblasts cannot generate focal adhesions with the material's surface, and, therefore, other cell–interface interactions such as topographical anchorage or cell attachment mediated by adhesion of extracellular matrix proteins are discussed in this paper. On non‐woven meshes protrusion of filopodia and/or lamellipodia between individual fibers increase the surface contact area, which depends on the diameter of the fibers of the non‐woven meshes. In contrast, at flat (film) or microstructured surfaces (hydrogels) such interactions seem to be precluded.  相似文献   
22.
In general, the Lagrange multiplier method (LMM) is used to incorporate subsidiary conditions into variational principles. The Lagrange multipliers represent an additional field of independent variables. The attempt to satisfy subsidiary conditions without employing additional independent unknowns has led to the development of simplified variational principles (SVP). They are characterized by expressing Lagrange multipliers in terms of original field variables by means of the Euler-Lagrange equations for the multipliers, providing their physical interpretation. In the first part of the theoretical investigation, systems with infinitely many degrees-of-freedom are studied. It is shown that the Euler-Lagrange equations of a LMM based on a modification of the principle of minimum of potential energy (PMIPE) do not hold unconditionally, that is, for arbitrary subsidiary conditions, for the corresponding SVP. The second part of the theoretical investigation is concerned with systems with a finite number of degrees-of-freedom. The finite element method (FEM) is employed to discuss and compare the characteristics of the LMM and of the corresponding SVP. Contrary to the former, the latter are found to be problem-dependent. Several shortcomings of the SVP are listed, including the possibility of obtaining an infinite sequence of singular coefficient matrices in the process of a systematic mesh refinement. Consequently, convergence of finite element solutions to the true solution in the limit of finite element representations is not guaranteed. The theoretical findings are corroborated by the results of a detailed numerical study.  相似文献   
23.
We present measurements on an aperiodic device-specific longitudinal-mode pattern in InGaN laser diodes. The characteristic shape of this pattern occurs only if the laser is driven slightly above threshold; in addition, it tunes with temperature at exactly the same rate as the cavity modes. By careful selection of the collection optics and averaging ten rapid scans over 15 min in a high-resolution Fourier transform spectrometer, we could exclude possible explanations like beating of mode families, self-pulsation, or external reflections. A naive simulation of the longitudinal modes profiting from their individual "gain profile" along the cavity suggests that we see the signature of quantum-well thickness fluctuations.  相似文献   
24.
In this paper, the authors derived the analytical bit error rate expressions for orthogonal frequency division multiple access and single‐carrier frequency‐division multiple access (SC‐FDMA) in Rayleigh slow‐fading channel for binary phase‐shift keying/quadrature phase‐shift keying/16‐quadrature amplitude modulations under pilot jamming and pilot symbol‐assisted channel estimation. Beginning with the bit error rate analysis from the general case of pilot symbol‐assisted channel estimation technique in Rayleigh slow‐fading channel, the expressions are first modified for different modulations and then further customized to account for the Zero‐Forcing equalization in frequency or time direction with application respectively to orthogonal frequency division multiple access or SC‐FDMA without and with pilot jamming. Piecewise‐linear interpolation is used for its simplicity. The simulation results match perfectly with the theoretical predictions except for some discrepancies with SC‐FDMA, which imply that the generalized equations developed here have to be further modified to account for system‐specific features like discrete Fourier transform precoding for SC‐FDMA. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
25.
Silicon wafers comprise approximately 40% of crystalline silicon module cost and represent an area of great technological innovation potential. Paradoxically, unconventional wafer‐growth techniques have thus far failed to displace multicrystalline and Czochralski silicon, despite four decades of innovation. One of the shortcomings of most unconventional materials has been a persistent carrier lifetime deficit in comparison to established wafer technologies, which limits the device efficiency potential. In this perspective article, we review a defect‐management framework that has proven successful in enabling millisecond lifetimes in kerfless and cast materials. Control of dislocations and slowly diffusing metal point defects during growth, coupled to effective control of fast‐diffusing species during cell processing, is critical to enable high cell efficiencies. To accelerate the pace of novel wafer development, we discuss approaches to rapidly evaluate the device efficiency potential of unconventional wafers from injection‐dependent lifetime measurements. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
26.
This article deals with the development of fine-grained high-strength low-alloy (HSLA) magnesium alloys intended for use as biodegradable implant material. The alloys contain solely low amounts of Zn and Ca as alloying elements. We illustrate the development path starting from the high-Zn-containing ZX50 (MgZn5Ca0.25) alloy with conventional purity, to an ultrahigh-purity ZX50 modification, and further to the ultrahigh-purity Zn-lean alloy ZX10 (MgZn1Ca0.3). It is shown that alloys with high Zn-content are prone to biocorrosion in various environments, most probably because of the presence of the intermetallic phase Mg6Zn3Ca2. A reduction of the Zn content results in (Mg,Zn)2Ca phase formation. This phase is less noble than the Mg-matrix and therefore, in contrast to Mg6Zn3Ca2, does not act as cathodic site. A fine-grained microstructure is achieved by the controlled formation of fine and homogeneously distributed (Mg,Zn)2Ca precipitates, which influence dynamic recrystallization and grain growth during hot forming. Such design scheme is comparable to that of HSLA steels, where low amounts of alloying elements are intended to produce a very fine dispersion of particles to increase the material’s strength by refining the grain size. Consequently our new, ultrapure ZX10 alloy exhibits high strength (yield strength R p = 240 MPa, ultimate tensile strength R m = 255 MPa) and simultaneously high ductility (elongation to fracture A = 27%), as well as low mechanical anisotropy. Because of the anodic nature of the (Mg,Zn)2Ca particles used in the HSLA concept, the in vivo degradation in a rat femur implantation study is very slow and homogeneous without clinically observable hydrogen evolution, making the ZX10 alloy a promising material for biodegradable implants.  相似文献   
27.
Two different high performance quantum cascade distributed-feedback lasers with four quantum-well-based active regions and InP top cladding layers are presented. The first device, which emitted at 9.5 μm, was mounted junction down in order to get high average powers of up to 71 mW at -30°C and 30 mW at room temperature. The other device, which lased at 9.1 μm, was optimized for high pulsed operating temperatures and tested up to 150°C at 1.5% duty cycle. The emission of both lasers stayed single mode with more than 20-dB side-mode suppression ratio over the entire investigated power and temperature range  相似文献   
28.
Two monolithically integrated optical displacement sensors fabricated in the GaAs/AlGaAs material system are reported. These single-chip microsystems are configured as Michelson interferometers and comprise a distributed Bragg reflector (DBR) laser, photodetectors, phase shifters, and waveguide couplers. While the use of a single Michelson interferometer allows measurement of displacement magnitude only, a double Michelson interferometer with two interferometer signals in phase quadrature also permits determination of movement direction. In addition, through the use of two 90° phase-shifted interferometer signals in the latter device, a phase interpolation of 2π/20 is possible, leading to a displacement resolution in the range of 20 nm. The integration of these complex optical functions could be realized with a relatively simple fabrication process  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号