首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5919篇
  免费   484篇
  国内免费   20篇
电工技术   58篇
综合类   7篇
化学工业   1756篇
金属工艺   96篇
机械仪表   112篇
建筑科学   254篇
矿业工程   15篇
能源动力   142篇
轻工业   658篇
水利工程   42篇
石油天然气   16篇
无线电   631篇
一般工业技术   1053篇
冶金工业   711篇
原子能技术   56篇
自动化技术   816篇
  2022年   31篇
  2021年   65篇
  2020年   73篇
  2019年   113篇
  2018年   135篇
  2017年   147篇
  2016年   183篇
  2015年   160篇
  2014年   233篇
  2013年   386篇
  2012年   270篇
  2011年   336篇
  2010年   285篇
  2009年   277篇
  2008年   310篇
  2007年   237篇
  2006年   247篇
  2005年   196篇
  2004年   198篇
  2003年   182篇
  2002年   190篇
  2001年   121篇
  2000年   133篇
  1999年   105篇
  1998年   121篇
  1997年   91篇
  1996年   103篇
  1995年   85篇
  1994年   96篇
  1993年   81篇
  1992年   72篇
  1991年   51篇
  1990年   71篇
  1989年   71篇
  1988年   49篇
  1987年   50篇
  1986年   47篇
  1985年   72篇
  1984年   61篇
  1983年   63篇
  1982年   52篇
  1981年   49篇
  1980年   49篇
  1979年   59篇
  1978年   31篇
  1977年   45篇
  1976年   40篇
  1975年   41篇
  1974年   31篇
  1973年   27篇
排序方式: 共有6423条查询结果,搜索用时 15 毫秒
131.

The classification task usually works with flat and batch learners, assuming problems as stationary and without relations between class labels. Nevertheless, several real-world problems do not assume these premises, i.e., data have labels organized hierarchically and are made available in streaming fashion, meaning that their behavior can drift over time. Existing studies on hierarchical classification do not consider data streams as input of their process, and thus, data is assumed as stationary and handled through batch learners. The same can be said about works on streaming data, as the hierarchical classification is overlooked. Studies concerning each area individually are promising, yet, do not tackle their intersection. This study analyzes the main characteristics of the state-of-the-art works on hierarchical classification for streaming data concerning five aspects: (i) problems tackled, (ii) datasets, (iii) algorithms, (iv) evaluation metrics, and (v) research gaps in the area. We performed a systematic literature review of primary studies and retrieved 3,722 papers, of which 42 were identified as relevant and used to answer the aforementioned research questions. We found that the problems handled by hierarchical classification of data streams include mainly classification of images, human activities, texts, and audio; the datasets are mostly created or synthetic data; the algorithms and evaluation metrics are well-known techniques or based on those; and research gaps are related to dynamic context, data complexity, and computational resources constraints. We also provide implications for future research and experiments to consider common characteristics shared amongst hierarchical classification and data stream classification.

  相似文献   
132.
There is a pressing need to develop more effective therapeutics to fight cancer. An idyllic chemotherapeutic is expected to overcome drug resistance of tumors and minimize harmful side effects to healthy tissues. Antibody‐functionalized porous silicon nanoparticles loaded with a combination of chemotherapy drug and gold nanoclusters (AuNCs) are developed. These nanocarriers are observed to selectively deliver both payloads, the chemotherapy drug and AuNCs, to human B cells. The accumulation of AuNCs to target cells and subsequent exposure to an external electromagnetic field in the microwave region render them more susceptible to the codelivered drug. This approach represents a targeted two‐stage delivery nanocarrier that benefits from a dual therapeutic action that results in enhanced cytotoxicity.  相似文献   
133.
Gold‐coated nanodisk arrays of nearly micron periodicity are reported that have high figure of merit (FOM) and sensitivity necessary for plasmonic refractometric sensing, with the added benefit of suitability for surface‐enhanced Raman scattering (SERS), large‐scale microfabrication using standard photolithographic techniques and a simple instrumental setup. Gold nanodisk arrays are covered with a gold layer to excite the Bragg modes (BM), which are the propagative surface plasmons localized by the diffraction from the disk array. This generates surface‐guided modes, localized as standing waves, leading to highly confined fields confirmed by a mapping of the SERS intensity and numerical simulations with 3D finite element method. The optimal gold‐coated nanodisk arrays are applied for refractometric sensing in transmission spectroscopy with better performance than nanohole arrays and they are integrated to a 96‐well plate reader for detection of IgY proteins in the nanometer range in PBS. The potential for sensing in biofluids is assessed with IgG detection in 1:1 diluted urine. The structure exhibits a high FOM of up to 46, exceeding the FOM of structures supporting surface plasmon polaritons and comparable to more complex nanostructures, demonstrating that subwavelength features are not necessary for high‐performance plasmonic sensing.  相似文献   
134.
Deterministic lateral displacement (DLD) devices enable to separate nanometer to micrometer‐sized particles around a cutoff diameter, during their transport through a microfluidic channel with slanted rows of pillars. In order to design appropriate DLD geometries for specific separation sizes, robust models are required to anticipate the value of the cutoff diameter. So far, the proposed models result in a single cutoff diameter for a given DLD geometry. This paper shows that the cutoff diameter actually varies along the DLD channel, especially in narrow pillar arrays. Experimental and numerical results reveal that the variation of the cutoff diameter is induced by boundary effects at the channel side walls, called the wall effect. The wall effect generates unexpected particle trajectories that may compromise the separation efficiency. In order to anticipate the wall effect when designing DLD devices, a predictive model is proposed in this work and has been validated experimentally. In addition to the usual geometrical parameters, a new parameter, the number of pillars in the channel cross dimension, is considered in this model to investigate its influence on the particle trajectories.  相似文献   
135.
The basic principles of the discrete duality and nonlinear monotone finite volume methods are combined in order to obtain a new monotone nonlinear finite volume method for the approximation of diffusion operators on general meshes. Numerical results highlight both the second‐order accuracy of this method on general meshes and its capability to deal with challenging anisotropic diffusion problems on various computational domains. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
136.
This paper proposes a generalized finite element method based on the use of parametric solutions as enrichment functions. These parametric solutions are precomputed off‐line and stored in memory in the form of a computational vademecum so that they can be used on‐line with negligible cost. This renders a more efficient computational method than traditional finite element methods at performing simulations of processes. One key issue of the proposed method is the efficient computation of the parametric enrichments. These are computed and efficiently stored in memory by employing proper generalized decompositions. Although the presented method can be broadly applied, it is particularly well suited in manufacturing processes involving localized physics that depend on many parameters, such as welding. After introducing the vademecum‐generalized finite element method formulation, we present some numerical examples related to the simulation of thermal models encountered in welding processes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
137.
138.
A critical overview of the latest developments in the aluminum battery technologies is reported. The substitution of lithium with alternative metal anodes characterized by lower cost and higher abundance is nowadays one of the most widely explored paths to reduce the cost of electrochemical storage systems and enable long‐term sustainability. Aluminum based secondary batteries could be a viable alternative to the present Li‐ion technology because of their high volumetric capacity (8040 mAh cm?3 for Al vs 2046 mAh cm?3 for Li). Additionally, the low cost aluminum makes these batteries appealing for large‐scale electrical energy storage. Here, we describe the evolution of the various aluminum systems, starting from those based on aqueous electrolytes to, in more details, those based on non‐aqueous electrolytes. Particular attention has been dedicated to the latest development of electrolytic media characterized by low reactivity towards other cell components. The attention is then focused on electrode materials enabling the reversible aluminum intercalation‐deintercalation process. Finally, we touch on the topic of high‐capacity aluminum‐sulfur batteries, attempting to forecast their chances to reach the status of practical energy storage systems.  相似文献   
139.
140.
Diamond‐dispersed copper matrix (Cu/D) composite materials with different interfacial configurations are fabricated through powder metallurgy and their thermal performances are evaluated. An innovative solution to chemically bond copper (Cu) to diamond (D) has been investigated and compared to the traditional Cu/D bonding process involving carbide‐forming additives such as boron (B) or chromium (Cr). The proposed solution consists of coating diamond reinforcements with Cu particles through a gas–solid nucleation and growth process. The Cu particle‐coating acts as a chemical bonding agent at the Cu–D interface during hot pressing, leading to cohesive and thermally conductive Cu/D composites with no carbide‐forming additives. Investigation of the microstructure of the Cu/D materials through scanning electron microscopy, transmission electron microscopy, and atomic force microscopy analyses is coupled with thermal performance evaluations through thermal diffusivity, dilatometry, and thermal cycling. Cu/D composites fabricated with 40 vol% of Cu‐coated diamonds exhibit a thermal conductivity of 475 W m?1 K?1 and a thermal expansion coefficient of 12 × 10?6 °C?1. These promising thermal performances are superior to that of B‐carbide‐bonded Cu/D composites and similar to that of Cr‐carbide‐bonded Cu/D composites fabricated in this study. Moreover, the Cu/D composites fabricated with Cu‐coated diamonds exhibit higher thermal cycling resistance than carbide‐bonded materials, which are affected by the brittleness of the carbide interphase upon repeated heating and cooling cycles. The as‐developed materials can be applicable as heat spreaders for thermal management of power electronic packages. The copper‐carbon chemical bonding solution proposed in this article may also be found interesting to other areas of electronic packaging, such as brazing solders, direct bonded copper substrates, and polymer coatings.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号