首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   11篇
化学工业   22篇
金属工艺   2篇
机械仪表   2篇
建筑科学   1篇
能源动力   4篇
轻工业   31篇
石油天然气   1篇
无线电   8篇
一般工业技术   18篇
冶金工业   6篇
自动化技术   7篇
  2022年   2篇
  2021年   5篇
  2020年   2篇
  2019年   6篇
  2018年   3篇
  2017年   3篇
  2016年   5篇
  2015年   7篇
  2014年   7篇
  2013年   6篇
  2012年   2篇
  2011年   8篇
  2010年   2篇
  2009年   4篇
  2008年   5篇
  2007年   5篇
  2006年   1篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1983年   1篇
  1981年   2篇
  1978年   1篇
  1976年   2篇
  1973年   2篇
  1971年   1篇
排序方式: 共有102条查询结果,搜索用时 15 毫秒
71.
Recently, big data becomes evitable due to massive increase in the generation of data in real time application. Presently, object detection and tracking applications becomes popular among research communities and finds useful in different applications namely vehicle navigation, augmented reality, surveillance, etc. This paper introduces an effective deep learning based object tracker using Automated Image Annotation with Inception v2 based Faster RCNN (AIA-IFRCNN) model in big data environment. The AIA-IFRCNN model annotates the images by Discriminative Correlation Filter (DCF) with Channel and Spatial Reliability tracker (CSR), named DCF-CSRT model. The AIA-IFRCNN technique employs Faster RCNN for object detection and tracking, which comprises region proposal network (RPN) and Fast R-CNN. In addition, inception v2 model is applied as a shared convolution neural network (CNN) to generate the feature map. Lastly, softmax layer is applied to perform classification task. The effectiveness of the AIA-IFRCNN method undergoes experimentation against a benchmark dataset and the results are assessed under diverse aspects with maximum detection accuracy of 97.77%.  相似文献   
72.
This study reports an eco‐friendly‐based method for the preparation of biopolymer Ag–Au nanoparticles (NPs) by using gum kondagogu (GK; Cochlospermum gossypium), as both reducing and protecting agent. The formation of GK‐(Ag–Au) NPs was confirmed by UV‐absorption, fourier transformed infrared (FTIR), atomic force microscopy (AFM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The GK‐(Ag–Au) NPs were of 1–12 nm in size. The anti‐proliferative activity of nanoparticle constructs was assessed by MTT assay, confocal microscopy, flow cytometry and quantitative real‐time polymerase chain reaction (PCR) techniques. Expression studies revealed up‐regulation of p53, caspase‐3, caspase‐9, peroxisome proliferator‐activated receptors (PPAR) PPARa and PPARb, genes and down‐regulation of Bcl‐2 and Bcl‐x(K) genes, in B16F10 cells treated with GK‐(Ag–Au) NPs confirming the anti‐proliferative properties of the nanoparticles.Inspec keywords: nanomedicine, transmission electron microscopy, genetics, cellular biophysics, molecular biophysics, enzymes, nanofabrication, gold, silver, scanning electron microscopy, nanoparticles, Fourier transform infrared spectra, atomic force microscopy, biomedical materialsOther keywords: size 1.0 nm to 12.0 nm, Ag‐Au, anti‐proliferative assessment, eco‐friendly‐based method, anti‐proliferative activity, anti‐proliferative properties, biopolymer‐based Ag–Au bimetallic nanoparticle, Cochlospermum gossypium, gum kondagogu, biopolymer preparation, biogenic synthesis, UV‐absorption, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, MTT assay, confocal microscopy, flow cytometry, caspase‐3, caspase‐9, peroxisome proliferator‐activated receptors, Bcl‐2 gene, Bcl‐x(K) gene, B16F10 cells  相似文献   
73.

This paper proposes a methodology for single-phase power factor correction with DC–DC single-ended primary inductance converter (SEPIC) using cascade control strategy which comprises of genetic algorithm-based outer PI controller and an inner current controller which uses an adaptive neuro-fuzzy inference system-based sliding mode controller. DC–DC SEPIC is a fourth-order converter, and in order to reduce the complexity in controller design, reduced-order model of the original higher-order system is obtained by using Type-I Hankel matrix method. The performance of the proposed system is analysed using MATLAB/Simulink-based simulation studies. In order to ensure the robustness of the proposed controller, the performance parameters such as percentage total harmonic distortion, power factor, % voltage regulation, and % efficiency are analysed. From the simulation results, it is inferred that the proposed method provides efficient tracking of output voltage and effective source current shaping for load, line, and set point variations.

  相似文献   
74.
SPM based lithographic techniques have been developed to pattern various substrates such as metals, semiconductors, and organic/polymer films due to its simplicity and high spatial precision nanostructure. Fabrication of nanostructure using polymeric materials is a key technique for the development of nanodevices. Here, we report the fabrication of nanostructures from polyacrylicacid (PAA) and polymethacrylicacid (PMAA) film on a silicon substrate using atomic force microscope (AFM). The formation of the nanopattern from the polymer film was studied using electrostatic nanolithography and the optimization of the conditions for nanopatterning of the polymer film was investigated with respect to the applied potential and translational speed of the AFM tip. The nanostructure of size 28 nm was created using the biased AFM tip on the PMAA film coated on Si(100) substrate and found that this method is a direct and reliable method to produce uniform nanostructures on a polymer film.  相似文献   
75.
This investigation is primarily focused to study the effect of fiber network on the permeability in vacuum infusion molding process. The unsaturated permeability of several natural fiber mats with different networks is measured. The experimental permeabilities are fitted by the Kozeny model and contact angle model. The outcome highlighted that the contact angle model shows more precise results as compared to kozeny model. The obtained permeability for the random fiber mats shows higher values than directional fiber mat. Furthermore, the maximum increase in tensile strength is observed in the unidirectional composites and the flow along the fiber direction.  相似文献   
76.
The effects of radio frequency (RF) heating treatments with different final temperatures (70, 80, and 90 °C) and electrode gaps (120, 160, and 200 mm) on the structural characteristics of soy protein isolate (SPI) dispersion were investigated. The results showed that RF heating significantly influenced free sulfhydryl groups and surface hydrophobicity of SPI. Free sulfhydryl groups increased with the increase of final temperature. The hydrophobicity of the RF-heated sample was higher than the original SPI without RF treatment. The highest hydrophobicity of the RF-heated SPI was found with electrode gap of 200 mm at 90 °C. RF heating treatment resulted in the reduction of ultraviolet absorption of SPI indicating the change of three-dimensional positions of soy protein but did not modify the protein primary structure of SPI. The Fourier transform infrared spectroscopy showed that hydration of SPI was decreased by RF heating. The self-reassembly from random coil structure to β-sheet structure suggested that RF heating treatment can change the secondary structure of soy protein to be more orderly.
Graphical Abstract ?
  相似文献   
77.
ABSTRACT:  Salmonella Enteritidis (SE) contamination of poultry eggs is a major human health concern worldwide. The risk of SE from shell eggs can be significantly reduced through rapid cooling of eggs after they are laid and their storage under safe temperature conditions. Predictive models for the growth of SE in egg yolk under varying ambient temperature conditions (dynamic) were developed. The growth of SE in egg yolk under several isothermal conditions (10, 15, 20, 25, 30, 35, 37, 39, 41, and 43 °C) was determined. The Baranyi model, a primary model, was fitted with growth data for each temperature and corresponding maximum specific growth rates were estimated. Root mean squared error (RMSE) values were less than 0.44 log10 CFU/g and pseudo- R 2 values were greater than 0.98 for the primary model fitting. For developing the secondary model, the estimated maximum specific growth rates were then modeled as a function of temperature using the modified Ratkowsky's equation. The RMSE and pseudo- R 2 were 0.05/h and 0.99, respectively. A dynamic model was developed by integrating the primary and secondary models and solving it numerically using the 4th-order Runge–Kutta method to predict the growth of SE in egg yolk under varying temperature conditions. The integrated dynamic model was then validated with 4 temperature profiles (varying) such as linear heating, exponential heating, exponential cooling, and sinusoidal temperatures. The predicted values agreed well with the observed growth data with RMSE values less than 0.29 log10 CFU/g. The developed dynamic model can predict the growth SE in egg yolk under varying temperature profiles.  相似文献   
78.
Mobile evolution from the second generation (2G) to the third generation (3G) raises several important questions for operators and manufacturers. How to ensure that the old and current investments can still be utilized in the future? What is the optimum architecture? ATM or IP? Voice or data? There is no single correct answer to these questions, as it all depends on individual cases. In this paper, we discuss the transport architecture evolution for the universal mobile telecommunications system (UMTS)/international mobile telecommunications—year 2000 (IMT‐2000), or 3G cellular networks and interworking aspects between 2G and 3G cellular networks. The interfaces between access nodes in a cellular network and the changes incorporated to support packet data services are described. Emerging services such as mobile data, virtual private networks (VPN) and location aware networking are described. Role of ATM and IP in this new transport architecture is presented. Control and data plane interworking issues between different transport technologies are described. The new ATM standard, ATM adaptation layer type 2 (AAL2) and its applicability for transporting compressed speech in an ATM based cellular network is described. A similar approach in IP, multiplexing in real‐time transport protocol (RTP) payload to transport compressed speech on selective interfaces of 3G network, is introduced. Transport network architecture evolution within four different scenarios is evaluated. Special interest is focused on the protocol stacks and flexible layered solutions that allow smooth migration from one transport technology to another. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
79.
80.
Stainless steel fulfills most of the requirements as bipolar plates in Proton Exchange Membrane Fuel Cell. However, it undergoes severe corrosion in fuel cell operating condition. This can be resolved by coating the stainless steel with corrosion resistive conducting polymers. In this study, homogeneous and adherent conductive Poly(2-amino-5-mercapto-1,3,4- thiadiazole)/Polypyrrole (PAMT/PPY) mono and bilayer polymer composite coatings are electrosynthesized on 316L SS in 0.5 M H2SO4 by cyclic voltammetry and chronopotentiometry. The hydrophobicity and surface morphology of the coatings are analyzed by contact angle and scanning electron microscopy respectively. The polymer coatings are evaluated in 0.5 M H2SO4 medium by potentiodynamic polarization and impedance techniques at 25 °C. The polarization results reveal that PAMT on PPY composite coating shifts the Ecorr of the 316L SS towards noble direction. The EIS study reveals that the Rf value of PAMT on PPY coating is significantly higher by three orders (x103 Ωcm2) of magnitude than uncoated 316L SS. The corrosion performance of the coatings in simulated PEMFC environment is investigated by potentiodynamic and potentiostatic studies. Results show that the PAMT on PPY and PPY on PAMT bilayer coatings are stable and increased the corrosion potential by about 410–470 mV and 275–310 mV (SCE) in simulated cathodic and anodic conditions respectively. This investigation reports that the PAMT on PPY bilayer coating is serving as a good physical barrier and protecting the 316L SS against corrosion in PEMFC environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号