首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50624篇
  免费   4365篇
  国内免费   1510篇
电工技术   2063篇
技术理论   2篇
综合类   2020篇
化学工业   9880篇
金属工艺   2607篇
机械仪表   3149篇
建筑科学   2400篇
矿业工程   676篇
能源动力   1880篇
轻工业   4204篇
水利工程   687篇
石油天然气   1425篇
武器工业   193篇
无线电   7105篇
一般工业技术   8351篇
冶金工业   2716篇
原子能技术   687篇
自动化技术   6454篇
  2024年   151篇
  2023年   786篇
  2022年   1294篇
  2021年   1848篇
  2020年   1357篇
  2019年   1356篇
  2018年   1656篇
  2017年   1587篇
  2016年   1781篇
  2015年   1757篇
  2014年   2390篇
  2013年   3109篇
  2012年   3284篇
  2011年   3852篇
  2010年   3051篇
  2009年   3014篇
  2008年   2814篇
  2007年   2496篇
  2006年   2327篇
  2005年   1998篇
  2004年   1631篇
  2003年   1642篇
  2002年   1799篇
  2001年   1613篇
  2000年   1184篇
  1999年   1102篇
  1998年   1155篇
  1997年   827篇
  1996年   779篇
  1995年   579篇
  1994年   384篇
  1993年   326篇
  1992年   266篇
  1991年   204篇
  1990年   152篇
  1989年   152篇
  1988年   137篇
  1987年   105篇
  1986年   91篇
  1985年   64篇
  1984年   53篇
  1983年   42篇
  1982年   45篇
  1981年   34篇
  1980年   44篇
  1979年   23篇
  1977年   24篇
  1976年   39篇
  1975年   22篇
  1974年   19篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
针对传统卷积神经网络(convolutional neural network, CNN)受感受野大小的限制,无法直接有效地获取空间结构及全局语义等关键信息,导致宽血管边界及毛细血管区域特征提取困难,造成视网膜血管分割表现不佳的问题,提出一种基于图卷积的视网膜血管分割细化框架。该框架通过轮廓提取及不确定分析方法,选取CNN粗分割结果中潜在的误分割区域,并结合其提取的特征信息构造出合适的图数据,送入残差图卷积网络(residual graph convolutional network, Res-GCN)二次分类,得到视网膜血管细化分割结果。该框架可以作为一个即插即用模块接入任意视网膜血管分割网络的末端,具有高移植性和易用性的特点。实验分别选用U型网络(U-neural network, U-Net)及其代表性改进网络DenseU-Net和AttU-Net作为基准网络,在DRIVE、STARE和CHASEDB1数据集上进行测试,本文框架的Sp分别为98.28%、99.10%和99.04%,Pr分别为87.97%、88.87%和90.25%,证明其具有提升基准网络分割效果的细化能力。  相似文献   
992.
针对高渗透率光伏微电网,提出了运行总成本最优的能量优化管理策略。在微电网并网和孤岛两种运行模式下,基于光伏的运维成本、储能设备的运行损耗、火电的环境污染及治理成本、微电网与大电网之间电能交易差额以及可调负荷的断电惩罚费用等因素,建立高渗透率光伏微电网的多目标能量优化模型,并在系统功率平衡等安全约束下,应用具有惯性权重系数的粒子群算法求解得到能量优化管理策略。算例分析表明,该能量管理策略具有经济性和有效性。  相似文献   
993.
The exceptional photophysical properties of 3D organic–inorganic lead halide hybrids (OILHs) endow their significant potential for usage in optoelectronics, which has sparked intense research on novel 3D OILHs and associated applications. However, constructing new 3D OILHs based on large organic cations suffers from tough challenges due to the limitation of the Goldschmidt tolerance factor rule, let alone further explorations of their practical applications. Herein, a brand-new 3D lead chloride hybrid, (1MPZ)Pb4Cl10·H2O ( 1 , 1MPZ = 1-methylpiperazine) is reported, featuring a dense 3D lead chloride framework made of the corner-, edge-, and face-shared lead chloride polyhedra. 1 presents a broadband white light emission with a large Stokes shift and a nanosecond photoluminescence lifetime, which originates from radiative recombination of self-trapped excitons (STEs) induced by the highly distorted structure. Such a reabsorption-free and fast-decayed STEs emission coupling with the dense 3D architecture further enables 1 with effective X-ray scintillation with good sensitivity. Impressively, 1 also shows superior environmental and radiation stability. This study provides a new 3D OILH with appealing luminescence, not only expanding the 3D OILH family but also inspiring the exploitation of their optoelectronic applications.  相似文献   
994.
Conventional elastomeric polymers used as substrates for wearable platforms have large positive Poisson's ratios (≈0.5) that cause a deformation mismatch with human skin that is multidirectionally elongated under bending of joints. This causes practical problems in elastomer-based wearable devices, such as delamination and detachment, leading to poorly reliable functionality. To overcome this issue, auxetic-structured mechanical reinforcement with glass fibers is applied to the elastomeric film, resulting in a negative Poisson's ratio (NPR), which is a skin-like stretchable substrate (SLSS). Several parameters for determining the materials and geometrical dimensions of the auxetic-structured reinforcing fillers are considered to maximize the NPR. Based on numerical simulation and digital image correlation analysis, the deformation tendencies and strain distribution of the SLSS are investigated and compared with those of the pristine elastomeric substrate. Owing to the strain-localization characteristics, an independent strain-pressure sensing system is fabricated using SLSS with a Ag-based elastomeric ink and a carbon nanotube-based force-sensitive resistor. Finally, it is demonstrated that the SLSS-based sensor platform can be applied as a wearable device to monitor the physical burden on the wrist in real time.  相似文献   
995.
Hydrogen is a promising alternative to fossil fuels that can reduce greenhouse gas emissions. Decoupled water electrolysis system using a reversible proton storage redox mediator, where the oxygen evolution reaction and hydrogen evolution reaction are separated in time and space, is an effective approach to producing hydrogen gas with high purity, high flexibility, and low cost. To realize fast hydrogen production in such a system, a redox mediator capable of releasing protons rapidly is required. Herein, α-MoO3, with an ultrafast proton transfer property that can be explained by a dense hydrogen bond network in the lattice oxygen arrays of HxMoO3, is examined as a high-rate redox mediator for fast hydrogen production in acidic electrolytes. The α-MoO3 redox mediator shows both a large capacity of 204 mAh g−1 and fast hydrogen production at a current rate of 10 A cm−2(≈153 A g−1), outperforming most of the previously reported solid-state redox mediators.  相似文献   
996.
Current catheter devices in minimally invasive surgery still possess limited functional options, lacking multimodal integration of both sensing and therapy. Catheter devices usually operate outside the tissue, incapable to detect intra-tissue biochemical information for accurate localization and assessment of lesions during surgery. Inspired by the feature and functions of Petromyzontidae, here a multimodal core-shell microneedles-integrated bioelectronic catheter (MNIBC) for tissue-penetrating theranostics in endoscopic surgery is developed. The microneedle (MN) device possesses individually addressable functionality at single-MN tip resolution, enabling multiplex functions (a total of 11 functions distributed in three types of catheters) including biochemical sensing, myoelectric modulation, electroporation, and drug delivery in a submucosal environment. The MNIBC is prepared through hybrid fabrication and dimensionality reduction strategies, where the MN electrodes are functionalized with an MXene-carbon nanotube (MXene-CNT)-based electron mediator, addressing the challenge of reduced electrode sensitivity on ultra-small MN tip. The functionalities of MNIBC are demonstrated both ex vivo and in vivo on anesthetized rabbits via laparoscopy, simulated cystoscopy, and laparotomy. The MNIBC can effectively detect intra-tissue biochemical signals in the bladder, and offers localized electroporation and intra-tissue drug delivery for precise treatments of lesions. The versatile features of the MNIBC present a highly advanced platform for precise surgeries.  相似文献   
997.
The rapidly increasing solar conversion efficiency (PCE) of hybrid organic–inorganic perovskite (HOIP) thin-film semiconductors has triggered interest in their use for direct solar-driven water splitting to produce hydrogen. However, application of these low-cost, electronic-structure-tunable HOIP tandem photoabsorbers has been hindered by the instability of the photovoltaic-catalyst-electrolyte (PV+E) interfaces. Here, photolytic water splitting is demonstrated using an integrated configuration consisting of an HOIP/n+silicon single junction photoabsorber and a platinum (Pt) thin film catalyst. An extended electrochemical (EC) lifetime in alkaline media is achieved using titanium nitride on both sides of the Si support to eliminate formation of insulating silicon oxide, and as an effective diffusion barrier to allow high-temperature annealing of the catalyst/TiO2-protected-n+silicon interface necessary to retard electrolytic corrosion. Halide composition is examined in the (FA1-xCsx)PbI3 system with a bandgap suitable for tandem operation. A fill factor of 72.5% is achieved using a Spiro-OMeTAD-hole-transport-layer (HTL)-based HOIP/n+Si solar cell, and a high photocurrent density of −15.9 mA cm−2 (at 0 V vs reversible hydrogen electrode) is attained for the HOIP/n+Si/Pt photocathode in 1 m NaOH under simulated 1-sun illumination. While this thin-film design creates stable interfaces, the intrinsic photo- and electro-degradation of the HOIP photoabsorber remains the main obstacle for future HOIP/Si tandem PEC devices.  相似文献   
998.
Radiotherapy is identified as a crucial treatment for patients with glioblastoma, but recurrence is inevitable. The efficacy of radiotherapy is severely hampered partially due to the tumor evolution. Growing evidence suggests that proneural glioma stem cells can acquire mesenchymal features coupled with increased radioresistance. Thus, a better understanding of mechanisms underlying tumor subclonal evolution may develop new strategies. Herein, data highlighting a positive correlation between the accumulation of macrophage in the glioblastoma microenvironment after irradiation and mesenchymal transdifferentiation in glioblastoma are presented. Mechanistically, elevated production of inflammatory cytokines released by macrophages promotes mesenchymal transition in an NF-κB-dependent manner. Hence, rationally designed macrophage membrane-coated porous mesoporous silica nanoparticles (MMNs) in which therapeutic anti-NF-κB peptides are loaded for enhancing radiotherapy of glioblastoma are constructed. The combination of MMNs and fractionated irradiation results in the blockage of tumor evolution and therapy resistance in glioblastoma-bearing mice. Intriguingly, the macrophage invasion across the blood-brain barrier is inhibited competitively by MMNs, suggesting that these nanoparticles can fundamentally halt the evolution of radioresistant clones. Taken together, the biomimetic MMNs represent a promising strategy that prevents mesenchymal transition and improves therapeutic response to irradiation as well as overall survival in patients with glioblastoma.  相似文献   
999.
Conventional power sources encounter difficulties in achieving structural unitization with complex-shaped electronic devices because of their fixed form factors. Here, it is realized that an on-demand conformal Zn-ion battery (ZIB) on non-developable surfaces uses direct ink writing (DIW)-based nonplanar 3D printing. First, ZIB component (manganese oxide-based cathode, Zn powder-based anode, and UV-curable gel composite electrolyte) inks are designed to regulate their colloidal interactions to fulfill the rheological requirements of nonplanar 3D printing, and establish bi-percolating ion/electron conduction pathways, thereby enabling geometrical synchronization with non-developable surfaces, and ensuring reliable electrochemical performance. The ZIB component inks are conformally printed on arbitrary curvilinear substrates to produce embodied ZIBs that can be seamlessly integrated with complicated 3D objects (including human ears). The conformal ZIB exhibits a high fill factor (i.e., areal coverage of cells on underlying substrates, ≈100%) that ensures high volumetric energy density (50.5 mWh cmcell−3), which exceeds those of previously-reported shape-adaptable power sources.  相似文献   
1000.
The accumulation of reactive oxygen species (ROS) and minimal osteogenic raw material in the osteoporotic bone microenvironment greatly inhibits the activity of osteoblasts. Herein, it is originally proposed to construct a biomatrix multifaceted bone microenvironment amendment -Mineralized zippered G4-Hemin DNAzyme hydrogel (MDH)-to improve osteoporotic osteogenic capacity and promote high-quality bone defect repair. The programmed design of the rolling circle amplified DNA hydrogel synthesis system allows the introduction of massive amounts of zippered G4-Hemin DNAzyme in MDH. The zippered G4-Hemin DNAzyme highly mimics the tight catalytic configuration of horseradish peroxidase and exerts excellent enzyme-like activity with considerable ROS molecule scavenging ability. In addition, the DNA amplification by-product pyrophosphate is ingeniously employed as a sufficient phosphorus source, thus constituting an autonomous mineralization system for waste reuse through the introduction of pyrophosphate hydrolase and calcium ions, which deposits in MDH as an osteogenic raw material and addresses the challenge of DNA hydrogel bio-application stability. The remarkable in vitro and in vivo outcomes demonstrate that MDH can effectively improve the oxidative stress status of osteoblasts, restore the balance of mitochondrial membrane potential, and reduce apoptosis, ultimately demonstrating superior osteogenic capacity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号