首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184291篇
  免费   18416篇
  国内免费   10494篇
电工技术   12459篇
技术理论   16篇
综合类   14722篇
化学工业   28925篇
金属工艺   10386篇
机械仪表   11754篇
建筑科学   14431篇
矿业工程   5240篇
能源动力   5094篇
轻工业   15910篇
水利工程   4390篇
石油天然气   8618篇
武器工业   1995篇
无线电   22206篇
一般工业技术   19945篇
冶金工业   7742篇
原子能技术   2235篇
自动化技术   27133篇
  2024年   790篇
  2023年   3069篇
  2022年   6195篇
  2021年   8559篇
  2020年   6483篇
  2019年   5037篇
  2018年   5453篇
  2017年   6199篇
  2016年   5502篇
  2015年   8265篇
  2014年   10272篇
  2013年   12385篇
  2012年   13643篇
  2011年   14815篇
  2010年   13078篇
  2009年   12379篇
  2008年   12188篇
  2007年   11143篇
  2006年   10357篇
  2005年   8379篇
  2004年   5847篇
  2003年   4853篇
  2002年   4852篇
  2001年   4289篇
  2000年   3334篇
  1999年   3111篇
  1998年   2366篇
  1997年   1977篇
  1996年   1739篇
  1995年   1437篇
  1994年   1102篇
  1993年   907篇
  1992年   684篇
  1991年   555篇
  1990年   386篇
  1989年   339篇
  1988年   261篇
  1987年   160篇
  1986年   151篇
  1985年   108篇
  1984年   59篇
  1983年   59篇
  1982年   69篇
  1981年   58篇
  1980年   63篇
  1979年   43篇
  1977年   21篇
  1976年   22篇
  1973年   16篇
  1951年   25篇
排序方式: 共有10000条查询结果,搜索用时 412 毫秒
11.
Oxide-based near infrared (IR)-shielding coatings consisting of quarter‐wave stacks of oxygen-deficient tantalum oxide (Ta2O5?x) and silicon oxide (SiO2) multilayers and tin-doped indium oxide (In2O3) (ITO) films with the thicknesses of 200–600 nm can block the passage of IR-A (wavelength: 760–1400 nm) and IR-B (wavelength: 1400–3000 nm) radiation, respectively. In this study, the optical properties and microstructure of these oxide-based IR-shielding coatings were investigated. Transmission electron microscopy images indicated that amorphous Ta2O5?x/amorphous SiO2 multilayers were uniform and dense. ITO films were found to be highly crystalline and show carrier concentrations of up to 7.1 × 1020 cm?3, resulting in the strong IR-B optical absorption due to the plasma excitation of the free carriers. Oxide-based IR-shielding coatings with an ITO thickness of 420 nm were found to have near-IR shielding rates of >90% and an average visible light transmittance of >70%. The effects of IR on human keratinocytes were studied to evaluate the IR-induced photoaging in human skin. It was found that the downregulation of cellular proliferation and the enhancement of senescence-associated β-galactosidase activity induced by IR irradiation were significantly inhibited by oxide-based IR-shielding coatings. Thus, this study provides a facile method for the development of coatings for smart windows with high IR-shielding ability and high visible light transmittance.  相似文献   
12.
Synthetic active matters are perfect model systems for non-equilibrium thermodynamics and of great potential for novel biomedical and environmental applications. However, most applications are limited by the complicated and low-yield preparation, while a scalable synthesis for highly functional microswimmers is highly desired. In this paper, an all-solution synthesis method is developed where the gold-loaded titania-silica nanotree can be produced as a multi-functional self-propulsion microswimmer. By applying light, heat, and electric field, the Janus nanotree demonstrated multi-mode self-propulsion, including photochemical self-electrophoresis by UV and visible light radiation, thermophoresis by near-infrared light radiation, and induced-charge electrophoresis under AC electric field. Due to the scalable synthesis, the Janus nanotree is further demonstrated as a high-efficiency, low-cost, active adsorbent for water decontamination, where the toxic mercury ions can be reclaimed with enhanced efficiency.  相似文献   
13.
Given the continuing issues of environment and energy, methane dry reforming for syngas production have sparked interest among researchers, but struggled with the process immaturity owing to catalyst deactivation. This review summarizes the recent advances in the development of efficient and stable catalysts with strong resistance to coking and metal sintering, including the application of novel materials, the assessment of advanced characterizations and the compatibility to improved reaction system. One feasible option is the crystalline oxide catalysts (perovskite, pyrochlore, spinel and LDHs), which feature a fine metal dispersion and surface confinement effect via a metal exsolution strategy and exhibit superior reactivity and stability. Some new materials (h-BN, clays and MOFs) also extend the option because of their unique morphology and microstructure. It also is elaborated that progresses were achieved in advanced characterizations application, leading to success in the establishment of reaction mechanisms and attributions to the formed robust catalysts. In addition, the perspective described the upgrade of reaction system to a higher reaction efficiency and milder reaction conditions. The combination of efficient reaction systems and robust catalysts paves a way for a scaling-up application of the process.  相似文献   
14.
In this work, density functional theory (DFT) calculations were used to investigate the mechanism of carbon corrosion on nitrogen-doped carbon support. Free energy diagrams were generated based on three proposed reaction pathways to evaluate corrosion mechanisms. The most energetically preferred mechanism on nitrogen-doped carbon was determined. The results show that the step of water dissociation to form #OH was the rate-determining step for gra-G-1N (graphene doped with graphitic N) and pyrr-G-1N (graphene doped with pyrrolic N). As for graphene doped with pyridinic N, the step of C#OC#O formation was critical. It was found that the control of nitrogen concentration was necessary for precisely designing optimized carbon materials. Abundance of nitrogen moieties aggravated the carbon corrosion. When the high potential was applied, specific types of graphitic N and pyridinic N were found to be favorable carbon modifications to improve carbon corrosion resistance. Moreover, the solvent effect was also investigated. The results provide theoretical insights and design guidelines to improve corrosion resistance in carbon support through material modification by inhibiting the adsorption of surface oxides (OH, O, and OOH).  相似文献   
15.
程锦 《今日消防》2021,6(8):62-64
随着经济的发展,消防救援队伍承担的任务越来越繁重.重大灾害事故的发生,对消防战勤保障方面提出了更高的要求.文章主要从消防战勤保障的主要任务职能、消防战勤的任务分类以及消防战勤保障体系建设存在的问题与建议等几个方面进行了详细的阐述,以期消防战勤保障得到更好的发展.  相似文献   
16.
在激光增材制造过程中,熔池温度的稳定性是表征加工过程稳定性的一个重要指标.设计一套控制熔池温度的闭环反馈系统,以达到控制熔池温度,提高成形件质量.基于C#编程软件实现了温度信号的传递,采用PID控制算法设计了温度控制器.实验结果表明,此系统能实时、准确地实现熔池温度的闭环控制,能够有效消除直壁墙熔覆过程中因热累积而造成的“蘑菇云”现象,且成形件几何精度有显著提高,各处显微组织差异较小,组织致密均匀.  相似文献   
17.
Electric vehicles (EVs) are considered a promising alternative to conventional vehicles (CVs) to alleviate the oil crisis and reduce urban air pollution and carbon emissions. Consumers usually focus on the tangible cost when choosing an EV or CV but overlook the time cost for restricting purchase or driving and the environmental cost from gas emissions, falling to have a comprehensive understanding of the economic competitiveness of CVs and EVs. In this study, a life cycle cost model for vehicles is conducted to express traffic and environmental policies in monetary terms, which are called intangible cost and external cost, respectively. Battery electric vehicles (BEVs), fuel cell electric vehicles (FCEVs), and CVs are compared in four first-tier, four new first-tier, and 4 s-tier and below cities in China. The comparison shows that BEVs and FCEVs in most cities are incomparable with CVs in terms of tangible cost. However, the prominent traffic and environmental policies in first-tier cities, especially in Beijing and Shanghai, greatly increase the intangible and external costs of CVs, making consumers more inclined to purchase BEVs and FCEVs. The main policy benefits of BEVs and FCEVs come from three aspects: government subsidies, purchase and driving restrictions, and environmental taxes. With the predictable reduction in government subsidies, traffic and environmental policies present important factors influencing the competitiveness of BEVs and FCEVs. In first-tier cities, BEVs and FCEVs already have a competitive foundation for large-scale promotion. In new first-tier and second-tier and below cities, stricter traffic and environmental policies need to be formulated to offset the negative impact of the reduction in government subsidies on the competitiveness of BEVs and FCEVs. Additionally, a sensitivity analysis reveals that increasing the mileage and reducing fuel prices can significantly improve the competitiveness of BEVs and FCEVs, respectively.  相似文献   
18.
An electrolyte Equation of State is presented by combining the Cubic Plus Association Equation of State,Mean Spherical Approximation and the Born equation.This new model uses experimental relative static permittivity,intend to predict well the activity coefficients of individual ions (ACI) and liquid densities of aqueous solutions.This new model is applied to model water + NaCl binary system and water + gas +NaCl ternary systems.The cation/anion-water interaction parameters of are obtained by fitting the exper-imental data of ACI,mean ionic activity coefficients (MIAC) and liquid densities of water + NaCl binary system.The cation/anion-gas interaction parameters are obtained by fitting the experimental data of gas solubilities in aqueous NaCl solutions.The modeling results show that this new model can correlate well with the phase equilibrium and volumetric properties.Without gas,predictions for ACI,MIAC,and liquid densities present relative average deviations of 1.3%,3.6% and 1.4% compared to experimental ref-erence values.For most gas-containing systems,predictions for gas solubilities present relative average deviations lower than 7.0%.Further,the contributions of ACI,and salting effects of NaCl on gases are ana-lyzed and discussed.  相似文献   
19.
The in situ axial X-ray diffraction patterns of four ceramic powder samples (MgO, Al2O3, AlN, and cBN) that were compressed in a diamond anvil cell under uniaxial non-hydrostatic conditions were recorded. The microscopic deviatoric stress as a function of the pressure was determined from the X-ray diffraction peak broadening analysis: the curves increased approximately linearly with the pressure at the initial compression stage and then levelled off under further compression. Pressure-induced transparency was observed in all of the samples under compression, and the pressure at the turning point on the curves of the microscopic deviatoric stress versus pressure corresponded to the pressure at which the samples became transparent. Analysis of the microstructural features of the pressure-induced transparent samples indicated that the compression caused the grains to fracture, and the broken grains bonded with each other. We demonstrated that the ceramics’ pressure-induced transparency was a process during which the grains were squeezed and broken, the pores were close between the grains, and the broken grains were re-bonded under compression.  相似文献   
20.
Developing the thermal stability of metal-based ceramic composites or their films has always been challenging and bottlenecks for the utilization of energy. In this paper, the novel mesh-like functional Al doped-MoO3 nanocomposite film with even distribution and high purity was firstly fabricated by the high-efficiency electrophoretic deposition and surface modification. The optimal suspension turned out to be the mixture of isopropanol and the additives of polyethyleneimine and benzoic acid. The microtopography, crystalline structure, environmental resistance and thermal stability were analyzed by field emission scanning electron microscope (FESEM), energy dispersive X-ray (EDX), X-ray diffractometer (XRD), exposure and droplet-impacting test, DSC analysis and ignition test, respectively. The water contact angle and sliding angle of product can reach ~170° and <1°, indicating the excellent anti-wetting property. In addition, the high heat-release (~3180 J/g) of product all kept almost unchangeable after six months exposure experiments, demonstrating the outstanding thermostability. The exquisite design idea here can perfectly match microelectromechanical system (MEMS), providing the valuable reference for fabricating other metal-based high-energy composites with long lifespan for real industrial applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号