首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1731篇
  免费   115篇
  国内免费   4篇
电工技术   22篇
综合类   4篇
化学工业   394篇
金属工艺   21篇
机械仪表   19篇
建筑科学   101篇
矿业工程   3篇
能源动力   78篇
轻工业   177篇
水利工程   10篇
石油天然气   3篇
无线电   184篇
一般工业技术   349篇
冶金工业   87篇
原子能技术   13篇
自动化技术   385篇
  2023年   19篇
  2022年   25篇
  2021年   53篇
  2020年   30篇
  2019年   47篇
  2018年   46篇
  2017年   43篇
  2016年   43篇
  2015年   59篇
  2014年   81篇
  2013年   112篇
  2012年   92篇
  2011年   143篇
  2010年   133篇
  2009年   101篇
  2008年   113篇
  2007年   98篇
  2006年   85篇
  2005年   76篇
  2004年   51篇
  2003年   64篇
  2002年   61篇
  2001年   26篇
  2000年   27篇
  1999年   34篇
  1998年   18篇
  1997年   7篇
  1996年   19篇
  1995年   14篇
  1994年   21篇
  1993年   19篇
  1992年   10篇
  1991年   10篇
  1990年   6篇
  1989年   5篇
  1988年   6篇
  1987年   3篇
  1986年   7篇
  1985年   5篇
  1984年   2篇
  1983年   2篇
  1982年   5篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1976年   5篇
  1975年   4篇
  1973年   2篇
  1967年   2篇
  1965年   2篇
排序方式: 共有1850条查询结果,搜索用时 15 毫秒
91.
92.
The main aim of this work is to examine the influence of the contents of nonmetallic printed circuit board (PCB) waste component on the photodegradation of recycled high‐density polyethylene (rHDPE) composites. The properties tested were chemical changes, flexural properties, color stability, water absorption, leaching properties, and crystallinity changes of the composites after exposure to 2,000 h of accelerated weathering. Surface degradation for composites with nonmetallic PCB was less compared to unfilled rHDPE mainly because glass fibers covered almost the whole surface of specimens, acting as a protective layer, thus, slowing down the photodegradation reaction. Incorporation of compatibilizer in rHDPE/PCB composites had played an important role in resisting degradation due to UV exposure. All the composite samples became lighter in the early stages of weathering exposure; however, compatibilized composites showed less lightening and reduction on strength and modulus. Carbonyl index increases with exposure time indicating that the oxidation reaction continuously occurred during the aging process. Incorporation of compatibilizer had successfully reduced the water absorption uptake by the composites and effectively delayed some degradation properties of weathering. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43110.  相似文献   
93.
The gallium gradient in Cu(In,Ga)Se2 (CIGS) layers, which forms during the two industrially relevant deposition routes, the sequential and co‐evaporation processes, plays a key role in the device performance of CIGS thin‐film modules. In this contribution, we present a comprehensive study on the formation, nature, and consequences of gallium gradients in CIGS solar cells. The formation of gallium gradients is analyzed in real time during a rapid selenization process by in situ X‐ray measurements. In addition, the gallium grading of a CIGS layer grown with an in‐line co‐evaporation process is analyzed by means of depth profiling with mass spectrometry. This gallium gradient of a real solar cell served as input data for device simulations. Depth‐dependent occurrence of lateral inhomogeneities on the µm scale in CIGS deposited by the co‐evaporation process was investigated by highly spatially resolved luminescence measurements on etched CIGS samples, which revealed a dependence of the optical bandgap, the quasi‐Fermi level splitting, transition levels, and the vertical gallium gradient. Transmission electron microscopy analyses of CIGS cross‐sections point to a difference in gallium content in the near surface region of neighboring grains. Migration barriers for a copper‐vacancy‐mediated indium and gallium diffusion in CuInSe2 and CuGaSe2 were calculated using density functional theory. The migration barrier for the InCu antisite in CuGaSe2 is significantly lower compared with the GaCu antisite in CuInSe2, which is in accordance with the experimentally observed Ga gradients in CIGS layers grown by co‐evaporation and selenization processes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
94.
The study of nanochannel-confined DNA is important from biotechnological and biophysical points of view. We produce nanochannels in elastomer with soft lithography and proton beam writing. Issues concerning DNA confined in such quasi one-dimensional channels are discussed. We describe DNA stretching via the control of channel diameter and buffer conditions and how the extension can be interpreted with theory and computer simulation. We then discuss the conformation of nano-confined DNA crowded by neutral polymers and like-charged proteins. As an example of a protein that has an affinity to DNA, the effect of heat-stable nucleoid-structuring protein, H-NS, on the folding and compaction of DNA is reviewed. Compaction of DNA by eukaryotic protamine and unpacking of pre-compacted DNA through an increase in salt concentration are discussed. We review results obtained with a novel, cross-channel device that allows the monitoring of the dynamic, conformational response of DNA after exposure to a ligand or protein and/or a change in buffer conditions in situ. As a biotechnological application, linearization of DNA by bottlebrush coating with a polypeptide copolymer is discussed. It is demonstrated that large-scale genomic organization can be sequenced using single DNA molecules on an array of elastomeric nanochannels. Overall, our results show that the effects of ligands and proteins on the conformation, folding, and condensation of DNA are not only related to classical controlling factors, such as osmotic pressure, charge, and binding, but that the interplay with confinement in a nanospace is of paramount importance.  相似文献   
95.
Kinetic models were developed for the hydrolysis of O‐acetyl‐galactoglucomannan (GGM), a hemicellulose appearing in coniferous trees. Homogeneous and heterogeneous acid catalysts hydrolyze GGM at about 90°C to the monomeric sugars galactose, glucose, and mannose. In the presence of homogeneous catalysts, such as HCl, H2SO4, oxalic acid, and trifluoroacetic acid, the hydrolysis process shows a regular kinetic behavior, while a prominent autocatalytic effect was observed in the presence of heterogeneous cation‐exchange catalysts, Amberlyst 15 and Smopex 101. The kinetic models proposed were based on the reactivities of the nonhydrolyzed sugar units and the increase of the rate constant (for heterogeneous catalysts) as the reaction progresses and the degree of polymerization decreases. General kinetic models were derived and special cases of them were considered in detail, by deriving analytical solutions for product distributions. The kinetic parameters, describing the autocatalytic effect were determined by nonlinear regression analysis. The kinetic model described very well the overall kinetics, as well as the product distribution in the hydrolysis of water soluble GGM by homogeneous and heterogeneous catalysts. The modelling principles developed in the work can be in principle applied to hydrolysis of similar hemicelluloses as well as starch and cellulose. © 2014 American Institute of Chemical Engineers AIChE J, 60: 1066–1077, 2014  相似文献   
96.
The 5-year relative survival for patients with head and neck cancer, the seventh most common form of cancer worldwide, was reported as 67% in developed countries in the second decade of the new millennium. Although surgery, radiotherapy, chemotherapy, or combined treatment often elicits an initial satisfactory response, relapses are frequently observed within two years. Current surveillance methods, including clinical exams and imaging evaluations, have not unambiguously demonstrated a survival benefit, most probably due to a lack of sensitivity in detecting very early recurrence. Recently, liquid biopsy monitoring of the molecular fingerprint of head and neck squamous cell carcinoma has been proposed and investigated as a strategy for longitudinal patient care. These innovative methods offer rapid, safe, and highly informative genetic analysis that can identify small tumors not yet visible by advanced imaging techniques, thus potentially shortening the time to treatment and improving survival outcomes. In this review, we provide insights into the available evidence that the molecular tumor fingerprint can be used in the surveillance of head and neck squamous cell carcinoma. Challenges to overcome, prior to clinical implementation, are also discussed.  相似文献   
97.
Acute kidney injury (AKI) is a public health problem worldwide. Sirtuins are a family of seven NAD+-dependent deacylases, Overexpression of Sirtuin 1, 3, and 5 protect against AKI. However, the role of Sirtuin 7 (Sirt7) in AKI is not known. Here, we analyzed how Sirt7 deficient mice (KO-Sirt7) were affected by AKI. As expected, wild-type and Sirt7 heterozygotes mice that underwent renal ischemia/reperfusion (IR) exhibited the characteristic hallmarks of AKI: renal dysfunction, tubular damage, albuminuria, increased oxidative stress, and renal inflammation. In contrast, the KO-Sirt7+IR mice were protected from AKI, exhibiting lesser albuminuria and reduction in urinary biomarkers of tubular damage, despite similar renal dysfunction. The renoprotection in the Sirt7-KO+IR group was associated with reduced kidney weight, minor expression of inflammatory cytokines and less renal infiltration of inflammatory cells. This anti-inflammatory effect was related to diminished p65 expression and in its active phosphorylation, as well as by a reduction in p65 nuclear translocation. Sirt7 deficient mice are protected from AKI, suggesting that this histone deacetylase promotes tubular damage and renal inflammation. Therefore, our findings indicate that Sirt7 inhibitors may be an attractive therapeutic target to reduce NFκB signaling.  相似文献   
98.
The presence of co-infections or superinfections with bacterial pathogens in COVID-19 patients is associated with poor outcomes, including increased morbidity and mortality. We hypothesized that SARS-CoV-2 and its components interact with the biofilms generated by commensal bacteria, which may contribute to co-infections. This study employed crystal violet staining and particle-tracking microrheology to characterize the formation of biofilms by Streptococcus pneumoniae and Staphylococcus aureus that commonly cause secondary bacterial pneumonia. Microrheology analyses suggested that these biofilms were inhomogeneous soft solids, consistent with their dynamic characteristics. Biofilm formation by both bacteria was significantly inhibited by co-incubation with recombinant SARS-CoV-2 spike S1 subunit and both S1 + S2 subunits, but not with S2 extracellular domain nor nucleocapsid protein. Addition of spike S1 and S2 antibodies to spike protein could partially restore bacterial biofilm production. Furthermore, biofilm formation in vitro was also compromised by live murine hepatitis virus, a related beta-coronavirus. Supporting data from LC-MS-based proteomics of spike–biofilm interactions revealed differential expression of proteins involved in quorum sensing and biofilm maturation, such as the AI-2E family transporter and LuxS, a key enzyme for AI-2 biosynthesis. Our findings suggest that these opportunistic pathogens may egress from biofilms to resume a more virulent planktonic lifestyle during coronavirus infections. The dispersion of pathogens from biofilms may culminate in potentially severe secondary infections with poor prognosis. Further detailed investigations are warranted to establish bacterial biofilms as risk factors for secondary pneumonia in COVID-19 patients.  相似文献   
99.
1 智能家居的应用 最近,我们看到了家庭自动化和安全解决方案的广泛采用,其中包括照明、温度控制、安防、娱乐以及无处不在的传感器.短期内我们将看到的一大趋势是远距离应用,其将延伸到家庭之外的范围,例 如 Z-Wave Long?Range和Sidewalk,它们将开启一系列新的应用场景.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号