首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2686篇
  免费   210篇
  国内免费   2篇
电工技术   42篇
综合类   8篇
化学工业   788篇
金属工艺   69篇
机械仪表   46篇
建筑科学   138篇
矿业工程   35篇
能源动力   61篇
轻工业   280篇
水利工程   18篇
无线电   210篇
一般工业技术   511篇
冶金工业   231篇
原子能技术   13篇
自动化技术   448篇
  2023年   46篇
  2022年   73篇
  2021年   122篇
  2020年   84篇
  2019年   70篇
  2018年   96篇
  2017年   97篇
  2016年   119篇
  2015年   118篇
  2014年   146篇
  2013年   165篇
  2012年   155篇
  2011年   180篇
  2010年   110篇
  2009年   131篇
  2008年   132篇
  2007年   106篇
  2006年   86篇
  2005年   85篇
  2004年   67篇
  2003年   57篇
  2002年   49篇
  2001年   27篇
  2000年   32篇
  1999年   27篇
  1998年   66篇
  1997年   50篇
  1996年   34篇
  1995年   40篇
  1994年   19篇
  1993年   26篇
  1992年   13篇
  1991年   12篇
  1990年   11篇
  1989年   12篇
  1988年   11篇
  1987年   14篇
  1986年   16篇
  1985年   12篇
  1984年   12篇
  1983年   12篇
  1982年   7篇
  1981年   9篇
  1980年   8篇
  1979年   9篇
  1978年   5篇
  1977年   8篇
  1976年   17篇
  1974年   11篇
  1973年   7篇
排序方式: 共有2898条查询结果,搜索用时 15 毫秒
61.
We are developing an instrument, the Geometry Measuring Machine (GEMM), to measure the profile errors of aspheric and free form optical surfaces, with measurement uncertainties near 1 nm. Using GEMM, an optical profile is reconstructed from local curvatures of a surface, which are measured at points on the optic’s surface. We will describe a prototype version of GEMM, its repeatability with time, a measurements registry practice, and the calibration practice needed to make nanometer resolution comparisons with other instruments. Over three months, the repeatability of GEMM is 3 nm rms, and is based on the constancy of the measured profile of an elliptical mirror with a radius of curvature of about 83 m. As a demonstration of GEMM’s capabilities for curvature measurement, profiles of that same mirror were measured with GEMM and the NIST Moore M-48 coordinate measuring machine. Although the methods are far different, two reconstructed profiles differ by 22 nm peak-to-valley, or 6 nm rms. This comparability clearly demonstrates that with appropriate calibration, our prototype of the GEMM can measure complex-shaped optics.  相似文献   
62.
63.
This paper considers the design of feedback controllers for linear, time-invariant, spatially distributed systems in an approach which generalises the H-framework and in particular the H loop-shaping method. To this end, we introduce a class of spatially distributed system models called finite dimensional, distributed, linear, time-invariant systems. Sensors and actuators are considered to be part of the controller, rather than part of the plant, and thus the controller we wish to design is itself a spatially distributed system. Optimising over placements and shapes of the sensor and actuator spatial distribution functions is an integrated part of the controller design procedure. As an illustrative design example, we present the feedback stabilisation of an electrostatically destabilised, electrically conducting membrane.  相似文献   
64.
In industry continuous or impulse noise does not occur exclusively; rather it is a combination of both. If low-level continuous noise or impulse noise (below 120 dB) is added to an already existing high-level continuous noise this often numerically causes no essential increase in the rating level. Yet, it cannot be expected that also aural strain of these exposures is always negligible. Therefore, in a cross-over test series, ten male subjects (Ss) were exposed to white noise of 94 dB(A) for 1 h (TS I), energy-equivalent to an 8 h-rating level LArd of 85 dB(A). In a second test series (TS II) the same exposure was combined with 900 energetically negligible 5-ms impulses with a noise level of 113 dB(A) which increased the rating level by only 0.4 dB. The noise exposure of TS I and TS II was followed by an idealized resting phase in a soundproof cabin. In a third test series (TS III) the continuous noise of 94 dB(A) / 1 h was followed by 3 h of white noise at 70 dB(A). Such an additional load increases the LArd by merely 0.1 dB to 85.1 dB(A). In all three test series, the noise-induced temporary threshold shift (TTS2) and its restitution were measured. The continuous noise exposure of 94 dB(A) for 1 h was associated with a TTS2 of around 20 dB which disappeared completely after about 2 h. The additional impulse noise caused a small increase in the TTS2 and a prolongation of the restitution time. The maximum mean temporary threshold shift for the group increased only slightly (from 22.5 to 25.9 dB, which nevertheless can be statistically proven at a significance level of p 0.99). Yet, more importantly, the restitution time increased from 126 to 175 min, i. e. 3 h, which can be statistically proven at a significance level of p0.95. The TTS2-values of TS III did not differ significantly from those resulting from TS I. That was expected as the conditions up to that point in time were identical. But due to the additional subsequent exposure, the mean restitution time increased considerably from 126 min up to 240 min (4 h). The mean total physiological cost represented by the integrated restitution temporary threshold shift (IRTTS) increased in TS II by approximately 40% and in TS III even by 140%.

Relevance to industry

The results of the study show that levels of noise which have no influence on the rating level which traditionally is calculated according to the energy-equivalence principle are often of great importance, as they can lead to considerably prolonged restitution times. Therefore, the purely energy-equivalent determination of the rating level of both impulse noise and low sound levels can lead to an underestimation of latent problems so that over time a reversible TTS can evolve into a permanent threshold shift. The results are also of importance for the acoustic design of break rooms for noise-exposed workers. There should be conditions that allow an undisturbed restitution of hearing.  相似文献   

65.
66.
Alzheimer’s disease (AD) is a progressive condition and the most common cause of dementia worldwide. The neuropathological changes characteristic of the disorder can be successfully detected before the development of full-blown AD. Early diagnosis of the disease constitutes a formidable challenge for clinicians. CSF biomarkers are the in vivo evidence of neuropathological changes developing in the brain of dementia patients. Therefore, measurement of their concentrations allows for improved accuracy of clinical diagnosis. Moreover, AD biomarkers may provide an indication of disease stage. Importantly, the CSF biomarkers of AD play a pivotal role in the new diagnostic criteria for the disease, and in the recent biological definition of AD by the National Institute on Aging, NIH and Alzheimer’s Association. Due to the necessity of collecting CSF by lumbar puncture, the procedure seems to be an important issue not only from a medical, but also a legal, viewpoint. Furthermore, recent technological advances may contribute to the automation of AD biomarkers measurement and may result in the establishment of unified cut-off values and reference limits. Moreover, a group of international experts in the field of AD biomarkers have developed a consensus and guidelines on the interpretation of CSF biomarkers in the context of AD diagnosis. Thus, technological advancement and expert recommendations may contribute to a more widespread use of these diagnostic tests in clinical practice to support a diagnosis of mild cognitive impairment (MCI) or dementia due to AD. This review article presents up-to-date data regarding the usefulness of CSF biomarkers in routine clinical practice and in biomarkers research.  相似文献   
67.
68.
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号