首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8884篇
  免费   788篇
  国内免费   16篇
电工技术   121篇
综合类   15篇
化学工业   2148篇
金属工艺   350篇
机械仪表   431篇
建筑科学   135篇
矿业工程   3篇
能源动力   348篇
轻工业   915篇
水利工程   35篇
石油天然气   7篇
武器工业   1篇
无线电   1524篇
一般工业技术   2106篇
冶金工业   594篇
原子能技术   83篇
自动化技术   872篇
  2024年   11篇
  2023年   134篇
  2022年   196篇
  2021年   330篇
  2020年   231篇
  2019年   232篇
  2018年   315篇
  2017年   337篇
  2016年   406篇
  2015年   354篇
  2014年   462篇
  2013年   639篇
  2012年   649篇
  2011年   844篇
  2010年   587篇
  2009年   550篇
  2008年   448篇
  2007年   390篇
  2006年   323篇
  2005年   259篇
  2004年   263篇
  2003年   220篇
  2002年   165篇
  2001年   153篇
  2000年   157篇
  1999年   137篇
  1998年   230篇
  1997年   127篇
  1996年   105篇
  1995年   57篇
  1994年   64篇
  1993年   46篇
  1992年   36篇
  1991年   23篇
  1990年   23篇
  1989年   24篇
  1988年   16篇
  1987年   10篇
  1986年   15篇
  1985年   7篇
  1984年   10篇
  1983年   11篇
  1981年   6篇
  1980年   7篇
  1979年   6篇
  1977年   7篇
  1976年   9篇
  1974年   7篇
  1971年   7篇
  1970年   6篇
排序方式: 共有9688条查询结果,搜索用时 12 毫秒
71.
The thermal and thermomechanical properties of two series of poly(ethylene oxide) networks (NPEOs) were investigated as a function of the chain length between crosslink sites (Mc) and the concentration of LiClO4 (CL) in the NPEOs. The two series of networks were produced with silica and organic crosslinking agents and, therefore, had crosslink sites of different natures: one was an inorganic silicate network (silica NPEO), and the other was an organic polar group (organic NPEO). The crosslink sites in both series of networks were commonly covalently bonded to the poly(ethylene oxide) (PEO) phase through a urethane group in the NPEOs. The glass‐transition temperatures (Tg's) of the PEO phases in the NPEOs, according to differential scanning calorimetry, increased with a decrease in Mc and were higher in the silica NPEOs than in the organic NPEOs under the same Mc conditions. The difference in Tg between the two series of networks with the same Mc values increased with decreasing Mc. These results suggested that the interaction of crosslink sites with the PEO phase was stronger in the silica NPEOs than in the organic NPEOs. The addition of LiClO4 to the NPEOs resulted in Tg of the PEO phase in the NPEOs being elevated and increased according to the increase in CL. The increase of Tg of the PEO phase according to the increase of CL in the NPEOs was retarded or saturated at high values of CL, and this indicated that the limit of solubility of the salt in the polymer was attained. The retardation or saturation of the increase of Tg was also observed in dynamic mechanical analyses. The curves of the loss factor tan δ and temperatures from the dynamic mechanical analyses for the NPEOs with high values of CL showed shoulders or double peaks indicating the existence of the second phase in the polymer networks. In the curves of tan δ for salt‐complexed NPEOs with high values of CL, silica NPEOs showed a shoulder of low intensity, but organic NPEOs showed a distinguished second peak becoming stronger with increasing CL. The results of the Tg behavior and tan δ curves suggested that the salt solubility in the NPEOs was limited and that the salt solubility of PEO in the silica NPEOs was higher than that in the organic NPEOs. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 270–277, 2003  相似文献   
72.
Chlorinated isotactic polypropylenes (CPP) having various chlorine contents were blended with poly(ethylene-co-vinyl acetate)s (EVA) having various vinyl acetate (VA) contents. The blends were made by casting films from dilute THF solutions and miscibility of the blends was identified by single glass transition temperature, which was confirmed by DSC and dynamic mechanical measurements. Based on the miscibility data from a large number of CPP/EVA combinations, a miscibility map was depicted where CO equivalent weight (CO-EQW) of EVA was plotted against chlorine equivalent weight (Cl-EQW) of CPP. Though an attractive interaction between CPP and EVA could be detected in all the miscible and immiscible blend pairs, miscibility of the CPP/EVA blends could solely be observed in a relatively narrow range of Cl-EQW ca. 65–100 and CO-EQW ca. 170–230.  相似文献   
73.
High‐performance shape‐memory polyurethane block copolymers, prepared with two types of poly(tetramethylene glycol) (PTMG) used as soft segments, were investigated for their mechanical properties. Copolymers with a random or block soft‐segment arrangement had higher stresses at break and elongations at break than those with only one kind of PTMG. Random copolymers with fewer interchain interactions showed higher elongation than block copolymers. All the copolymers had shape‐recovery ratios higher than 80%. In dynamic mechanical testing, the glass‐transition behavior clearly depended on the soft‐segment arrangement: random copolymers had only one glass‐transition peak, whereas block copolymers showed two separate glass‐transition peaks. Overall, the control of the soft‐segment arrangement plays a vital role in the development of high‐performance shape‐memory polyurethane. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2410–2415, 2004  相似文献   
74.
The effects of reaction temperature, pressure and residence time were investigated with a flow apparatus. Cellobiose decomposition kinetics and products in suband supercritical water were examined at temperatures from 320 to 420 °C at pressures from 25 to 40 MPa, and at residence times within 3 sec. Cellobiose was found to decompose via hydrolysis and pyrolysis. The yield of desired hydrolysis product, glucose, was the maximum value of 36.8% at 320 °C, 35 MPa, but the amount of 5-(hydroxymethyl)furfural (HMF), fermentation inhibitor increased too because residence time increased in the subcritical region owing to decrease of reaction rate. Meanwhile, though the yield of glucose is low in the supercritical region, the yield of HMF decreased compared with the subcritical region; and at the minimum yield of HMF (380 °C, 25 MPa), the yield of glucose was 21.4%. The decomposition of cellobiose followed first-order kinetics and the activation energy for the decomposition of cellobiose was 51.05 kJ/mol at 40MPa.  相似文献   
75.
Reversed-phase high-performance liquid chromatography was successfully developed for the simultaneous and rapid separation for the main whey proteins, α-Lactalbumin and β-Lactoglobulin. This method consisted of a linear gradient of the two mobile phases of 0.1% trifluoroacetic acid in water and 0.1% trifluoroacetic acid in acetonitrile. The total run time for this separation was approximately 30 min, and α-Lactalbumin was eluted followed byβ- Lactoglobulin. The injection volume was fixed at 20 μl and the flow rate was 1 ml 1/min. The optimum mobile phase composition and gradient conditions to separate α-Lactalbumin and β-Lactoglobulin (A+B) were experimentally obtained at the 15 μm particle with a pore size of 300 Å on the linear-gradient mode.  相似文献   
76.
The influences of acetic acid addition to Mg-methoxide on the stability of the precursor and the crystallization behavior of sol–gel-derived MgO nano-powders and thin films were investigated using X-ray powder diffraction, transmission electron microscopy, Fourier-transformed infrared spectroscopy, and thermogravimetry. The addition of acetic acid enhanced the stability of the alkoxide against precipitation. Moreover, during postheat treatment of the gel powders treated with acetic acid, a significantly lowered crystallization temperature (250°C) was observed as compared to the untreated counterpart (350°C). The low-temperature crystallization of MgO, induced by the modification of Mg-methoxide with acetic acid, was related to the decomposition of organics at a lower temperature. These results could be explained in terms of the decrease of the O–R bond strength depending on the increase in the alkyl group size. MgO thin films having a high degree of crystallinity were successfully obtained from the Mg-methoxide treated with acetic acid at 300°C. The low-temperature crystallization of sol–gel-derived MgO thin films showed the feasibility for their application as a protective layer in alternative current plasma display panel cells.  相似文献   
77.
The technological and economic aspects of using the Fenton process to treat industrial wastewater containing morpholyne and diethylethanolamine, as well as sodium salts of naphthalene sulfonic acid and of ethylenediaminetetraacetic acid based on data obtained in pilot tests are discussed. Chemical Fenton technology was tested using commercial 30–35% solutions of H2O2 and iron (II) salts, which was followed by the additional electrochemical destruction of organic pollutants in an undivided reactor with catalytic stable anodes (CSA) and 1 g L−1 NaCl as a supporting electrolyte and a source of active chlorine. An alternative electrochemical method involving the electrogeneration of hydrogen peroxide in polluted water at the gas -diffusion cathode was studied both with the addition of ferrous salt to the electrolyte prior to electrolysis (in-cell electro-Fenton) as well as with the post-electrolysis addition of Fe2+ in another reactor (ex-cell electro-Fenton). The accumulation of hydrogen peroxide in concentrations sufficient for the mineralization of organic pollutants was achieved in both cases with near 100% current efficiency. In comparison with wastewater treatment processes which use a purchased hydrogen peroxide reagent, the Fenton-like processes achieved an economic savings of as much as 64.5% in running costs due to the on-site electrochemical generation of H2O2. Preparative electrolysis in the membrane reactor showed higher current efficiencies and lower specific energy consumptions for H2O2 electrogeneration in comparison with the results of tests carried out in an undivided cell.  相似文献   
78.
Recently, we introduced a concept of combinatorial chemistry to computational chemistry and proposed a new method called “combinatorial computational chemistry”, which enables us to perform a theoretical high-throughput screening of catalysts. In the present paper, we reviewed our recent application of our combinatorial computational chemistry approach to the design of new catalysts for high-quality transportation fuels. By using our combinatorial computational chemistry techniques, we succeeded to predict new catalysts for methanol synthesis and Fischer–Tropsch synthesis. Moreover, we have succeeded in the development of chemical reaction dynamics simulator based on our original tight-binding quantum chemical molecular dynamics method. This program realizes more than 5000 times acceleration compared to the regular first-principles molecular dynamics method. Electronic- and atomic-level information on the catalytic reaction dynamics at reaction temperatures significantly contributes the catalyst design and development. Hence, we also summarized our recent applications of the above quantum chemical molecular dynamics method to the clarification of the methanol synthesis dynamics in this review.  相似文献   
79.
CO adsorption over Pd4 and Pt4 cluster supported by c-ZrO2(1 1 1) and CeO2(1 1 1) catalyst systems was investigated using periodic density functional method in order to clarify the support effect on CO activation. We found that the support increases the CO activation for bridge and three-fold sites but decreases for the atop site. Moreover, it was found that the support changes the site preference for the CO adsorption. Bridge site on both the Pt4/c-ZrO2 and Pt4/CeO2 show larger CO adsorption energies than those on the other sites while the atop site is energetically preferable on isolated Pt4 cluster. c-ZrO2 supported Pd shows the largest CO activation with large charge transfer from the catalyst to the CO molecule. This reveals that ZrO2 supported Pd can be a good catalyst for CO activation because of its higher probability to the three-fold site CO adsorption. We also found that positively charged M4 clusters on the support keep their strong electron-donating properties and have enough charge density to contribute to the activation of an adsorbed CO molecule by a charge transfer.  相似文献   
80.
The purpose of this study was first to extract the anthropometric data of typical Korean male adults, based on the three‐dimensional anthropometric data measured through the Size Korea project. The data were then analyzed to identify the differences in the anthropometric characteristics between typical Koreans and 3D Korean mannequinmannequins generated by digital human models. Revision equations were then suggested to improve the inaccuracy of digital human models. Typical Korean adults subject to the 3D body scan data were selected by factor analysis with respect to the 5th, 50th, and 95th percentiles. Comparisons of anthropometric differences included the differences of the height and length variables in the vertical direction and the breadth, depth, and circumference variables in the horizontal direction. These comparisons demonstrated the differences in the anthropometric characteristics between typical Koreans and Korean mannequins based on differences in body shape and proportions between Korean and Western populations. Typical Koreans have shorter legs and longer torso than those of such mannequins generated from their own modeling algorithms, and the body shape of Koreans is more of an inverted triangular shape compared to the models. Although 3D digital human models are required to be modified to appropriately reflect the Asian body shape, modification of the modeling algoritms is not available to the public. The revision equations that convert the Korean modeling data of RAMSIS and Human in CATIA into typical Korean anthropometric data were instead suggested by regression analysis. It is expected that the proposed revision equations will help the designer evaluate design alternatives and improve the suitability of ergonomic evaluation for Korean customers. © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号