首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3175篇
  免费   99篇
  国内免费   12篇
电工技术   60篇
综合类   1篇
化学工业   537篇
金属工艺   64篇
机械仪表   136篇
建筑科学   63篇
矿业工程   6篇
能源动力   143篇
轻工业   247篇
水利工程   25篇
石油天然气   9篇
无线电   482篇
一般工业技术   633篇
冶金工业   422篇
原子能技术   17篇
自动化技术   441篇
  2024年   13篇
  2023年   29篇
  2022年   71篇
  2021年   113篇
  2020年   81篇
  2019年   103篇
  2018年   120篇
  2017年   111篇
  2016年   105篇
  2015年   53篇
  2014年   103篇
  2013年   202篇
  2012年   113篇
  2011年   133篇
  2010年   110篇
  2009年   125篇
  2008年   109篇
  2007年   119篇
  2006年   102篇
  2005年   74篇
  2004年   71篇
  2003年   58篇
  2002年   70篇
  2001年   45篇
  2000年   40篇
  1999年   54篇
  1998年   98篇
  1997年   75篇
  1996年   78篇
  1995年   53篇
  1994年   43篇
  1993年   44篇
  1992年   39篇
  1991年   40篇
  1990年   29篇
  1989年   38篇
  1988年   25篇
  1987年   32篇
  1986年   35篇
  1985年   29篇
  1984年   28篇
  1983年   29篇
  1982年   27篇
  1981年   28篇
  1980年   30篇
  1978年   17篇
  1977年   17篇
  1976年   35篇
  1975年   16篇
  1974年   16篇
排序方式: 共有3286条查询结果,搜索用时 0 毫秒
101.
With the help of simulations based on energy minimization, we have studied the effect of roughness of a rigid contactor with sinusoidal and step patterns on the adhesion-debonding cycle of a soft thin elastic film. The surface instability engendered by attractive forces between the contactor and the film produces a regularly spaced array of columns in the bonding phase. The inter-column spacing is governed largely by periodicity of the contactor pattern. Decreased periodicity of the pattern favors intermittent collapse of columns rather than a continuous peeling of contact zones. An increase in the amplitude of roughness decreases the maximum force required for debonding and increases the snap-off distance. The net effect results in a reduced work for debonding. Introduction of noise and increased step-size in simulations decreases the pull-off force and the snap-off distance, as in the case of a smooth contactor. Finally the study reveals that a patterned contactor can be used as a potential template in the patterning of soft interfaces.  相似文献   
102.
Borax (Na2B4O7, 10.5% Boron) loaded CMC‐g‐cl‐poly(AAm) hydrogel composites were prepared by in situ grafting of acrylamide on to sodium carboxymethyl cellulose in the presence of borax by free radical polymerization technique to develop slow boron (B) delivery device. The composition, morphology, and mechanical properties of synthesized composites were studied by X‐ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, texture analyser, and dynamic shear rheometer. Characterization revealed formation of borate ion ( ) from borax during polymerization reaction leading to extensive crosslinking of cellulosic chains and generation of mechanically strong composite hydrogels. Dynamic release of from the synthesized composites hydrogels followed Fickian diffusion mechanism and composites with high mechanical strength resulted in slow release of B. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43969.  相似文献   
103.
Recently ionic liquids(ILs) are introduced as novel dual function gas hydrate inhibitors. However, no desired gas hydrate inhibition has been reported due to poor IL selection and/or tuning method. Trial error as well as selection based on existing literature are the methods currently employed for selecting and/or tuning ILs. These methods are probabilistic, time consuming, expensive and may not result in selecting high performance ILs for gas hydrate mitigation. In this work, COSMO-RS is considered as a prescreening tool of ILs for gas hydrate mitigation by predicting the hydrogen bonding energies(E_(HB)) of studied IL inhibitors and comparing the predicted E_(HB) to the depression temperature(?) and induction time. Results show that, predicted EHBand chain length of ILs strongly relate and significantly affect the gas hydrate inhibition depression temperature but correlate moderately(R = 0.70) with average induction time in literature. It is deduced from the results that, ? increases with increasing IL EHBand/or decreases with increasing chain length. However, the cation–anion pairing of ILs also affects IL gas hydrate inhibition performance. Furthermore, a visual and better understanding of IL/water behavior for gas hydrate inhibition in terms of hydrogen bond donor and acceptor interaction analysis is also presented by determining the sigma profile and sigma potential of studied IL cations and anions used for gas hydrate mitigation for easy IL selection.  相似文献   
104.
The understanding of the flow characteristics and effect of gas-solid interactions in pneumatic risers is fundamental to investigate to ensure effective design cost-effective operation. Thus, to understand the effect of gas-solid interactions on the hydrodynamics of newly proposed conversing risers, this study mainly focused on predicting pressure drop in the dilute phase pneumatic conveying system. The experiments were conducted in a converging riser having a convergence angle of 0.2693°. Various solid particles such as sago, black mustard, and alumina have been considered to study the effect of particle sizes and density on the pressure drop. The experimental outcomes indicate that the total pressure drop increases with an increase in the solid density and gas mass flow rate. Moreover, smaller particle sizes are also increased the pressure drop. An empirical correlation is developed for the prediction of total pressure drop ΔPT in converging pneumatic riser via dimensional analysis. All dependent variables such as particle and air density, drag force, acceleration due to gravity, the mass flow rate of air and particle, the diameter of particle and converging riser, the height of converging riser were considered to develop the empirical correlation. The established relationship is tested, and experimental data have been fitted for its validation. The estimated relative error of less than 0.05 proved the significance of the developed correlation. Hence, it can be stated that the established relationship is useful in studying the effects of various parameters on the pressure drop across the length of the conversing riser.  相似文献   
105.
Recent advances in nanoscience and biomedicine have expanded our ability to design and construct multifunctional nanoparticles that combine targeting, therapeutic, and diagnostic functions within a single nanoscale complex. The theranostic capabilities of gold nanoshells, spherical nanoparticles with silica cores and gold shells, have attracted tremendous attention over the past decade as nanoshells have emerged as a promising tool for cancer therapy and bioimaging enhancement. This Account examines the design and synthesis of nanoshell-based theranostic agents, their plasmon-derived optical properties, and their corresponding applications. We discuss the design and preparation of nanoshell complexes and their ability to enhance the photoluminescence of fluorophores while maintaining their properties as MR contrast agents. In this Account, we discuss the underlying physical principles that contribute to the photothermal response of nanoshells. We then elucidate the photophysical processes that induce nanoshells to enhance the fluorescence of weak near-infrared fluorophores. Nanoshells illuminated with resonant light are either strong optical absorbers or scatterers, properties that give rise to their unique capabilities. These physical processes have been harnessed to visualize and eliminate cancer cells. We describe the application of nanoshells as a contrast agent for optical coherence tomography of breast carcinoma cells in vivo. Our recent studies examine nanoshells as a multimodal theranostic probe, using these nanoparticles for near-infrared fluorescence and magnetic resonance imaging (MRI) and for the photothermal ablation of cancer cells. Multimodal nanoshells show theranostic potential for imaging subcutaneous breast cancer tumors in animal models and the distribution of tumors in various tissues. Nanoshells also show promise as light-triggered gene therapy vectors, adding temporal control to the spatial control characteristic of nanoparticle-based gene therapy approaches. We describe the fabrication of DNA-conjugated nanoshell complexes and compare the efficiency of light-induced and thermally-induced release of DNA. Double-stranded DNA nanoshells also provide a way to deliver small molecules into cells: we describe the delivery and light-triggered release of DAPI (4',6-diamidino-2-phenylindole), a dye molecule used to stain DNA in the nuclei of cells.  相似文献   
106.
Design, Development, fabrication and investigation of the IV characteristics of the DSSC based on interconnected 15 nm SnO2 nanoparticles covered with a nano-scale thin layer of CaCO3 are described. The presence of CaCO3 has been confirmed by its characteristic XRD pattern and EDX plots. The thickness of the protective layer can be conveniently controlled by the molar ratio of SnO2:CaCO3 used in the preparation of the thin film and the optimum conditions for best performance of the DSSC are presented together with possible explanations for the variations observed when the molar ratio is changed. An optimum light-to-electricity conversion efficiency of 5.4% in the presence of a layer of CaCO3 has been obtained which is 3.2 times enhancement over the cell prepared without CaCO3. The characterization of the surface using different techniques is explained.  相似文献   
107.
Three polymer‐anchored metal complexes (Co, Cu, and Pd) were synthesized and characterized. The catalytic performance of these complexes was tested for the oxidation of olefins and aromatic alcohols. These complexes showed excellent catalytic activity and high selectivity. These complexes selectively gave epoxides and aldehydes from olefins and alcohols, respectively. Individually, the effect of various solvents, oxidants, substrate oxidant molar ratios, temperatures, and catalyst amounts for the oxidation of cyclohexene and benzyl alcohol were studied. Under optimized reaction conditions, 96, 81, and 71% conversions of cyclohexene and 86, 79, and 73% conversions of benzyl alcohol were obtained with Co(II), Cu(II), and Pd(II) catalysts, respectively. The catalytic results reveal that these complexes could be recycled more than five times without much loss in activity. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
108.
Mathematical models for single electrode reversible heat and non-isothermal electromotive force (EMF) of a solid oxide fuel cell (SOFC) are developed. These models estimate the volumetric reversible heat generation and EMF of electrochemical reactions, within each electrode at local conditions of temperature and pressure, based on entropy change of half reactions. The resulting equations are thermodynamically consistent. They inherently obey the conservation of energy law as the electrochemical energy released added to the heat of reactions at each electrode equate the enthalpy change of the reacted species. The equations are implemented to model electrodes in a tubular micro- solid oxide fuel cell (TμSOFC). The thermodynamic consistency of the model is numerically confirmed as the enthalpy of the reactants equates the electric energy released by the cell plus the sum of electrode heats plus electrolyte Ohmic heat. The effect of thermal gradients on the cell's overall EMF is found to be negligible. The reversible and irreversible heat generation of each electrode are distinguished. Overall, the anode is found to be endothermic, and the cathode exothermic.  相似文献   
109.

Guayule natural rubber (GNR) is an alternative resource of Hevea natural rubber (HNR) with 99.9% cis content in its 1,4-polyisoprene chemical backbone. In this study, compounds were formulated independently with four different reinforcing fillers such as carbon black (HAF), precipitated silica (VN3), fume silica (FUM) and nanofly ash (NFA) for the advancement of GNR based products. The cure characteristic, dynamic-mechanical performance and mechanical properties of GNR composite were studied with the reinforcing effect of different fillers on GNR. The cure characteristic results demonstrated that HAF and FUM silica filled compounds had more processing safety than VN3 and NFA filled compounds. Viscoelastic parameters of the vulcanizates were studied by dynamic mechanical analysis to estimate the glass transition characteristics and dynamic behavior. The higher storage modulus of FUM silica vulcanizate was an indication of superior filler reinforcing nature and improved rolling resistance than other filled systems. Additionally, HRTEM analysis also proved the better filler dispersion ability of FUM silica in GNR matrix. The mechanical properties were studied with a variation of each filler loading of 8, 16, and 32 phr in GNR vulcanizates. The tensile strength of each filled system increased with an increase of filler content from 8 to 32 phr. In comparison, FUM silica GNR vulcanizates exhibited better mechanical properties, therefore, it was considered as a better structure-performance composite than those of HAF, VN3 and NFA filled composites.

  相似文献   
110.
Changes occurring in jute fibers when treated with a 5% concentration of a NaOH solution for 0, 2, 4, 6, and 8 h were characterized by weight loss, linear density, tenacity, modulus, FTIR, and X‐ray measurements. A 9.63% weight loss was measured during 2 h of treatment with a drop of hemicellulose content from 22 to 12.90%. The linear density value showed no change until 2 h of treatment followed by a decrease from 33.0 to 14.5 denier by 56% after 6 h of treatment. The tenacity and modulus of the fibers improved by 45 and 79%, respectively, and the percent breaking strain was reduced by 23% after 8 h of treatment. X‐ray diffractograms showed increase in crystallinity of the fibers only after 6 h of treatment, while FTIR measurements showed much of the changes occurring by 2 h of treatment with an increased amount of OH groups. By measuring the rate of change of the modulus, tenacity, and percent breaking strain with the time of treatment, a clear transition was apparent at 4 h of treatment with the dissolution of hemicellulose, causing a weight loss and drop in the linear density before and development of crystallinity with an improvement in the properties after the transition time. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1013–1020, 2001  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号