We report the first demonstration of proton-exchanged optical planar waveguides in x-cut and z-cut LiNbO3 doped with 6 mol% ZnO using adipic acid as proton source. These waveguides exhibit a graded index profile which can be modeled by a linear step function with a surface index increase of 0.135 and 0.14 for x-cut and z-cut waveguides, respectively. The diffusion constant Do and the activation energy Q are characterized optically to be 1.64×109 μm2/h and 88.8 KJ/mol for x-cut waveguides, and 1.478×109 μm2/h and 91.25 KJ/mol for z-cut waveguides, respectively. The diffusion rate along the z-axis is slower than that along the x-axis, whereas the surface index increase on z-cut waveguides is larger than that on x-cut waveguides. 相似文献
The cardioprotective effects of EGb 761 on the release of nitric oxide (NO), the concentration of serum thiobarbituric acid reaction substance (TBARS), the activity of creatine kinase (CK) and the incidence of ventricular arrhythmias were investigated in myocardial ischemia-reperfusion injury in vivo. Using sodium nitrite (NaNO2) as standard source of nitric oxide (NO), we compared the correlation coefficients of the three measuring methods used currently in the determination of NOFe2+(DETC)2 complex with that of the measuring method suggested in this study. The result showed that measuring the whole height of three splitting signals is the best linear correlation to the concentration of NO comparing with other methods in this system. Using this method, we observed the effects of EGb 761 on NOFe2+(DETC)2 complex in myocardial ischemia-reperfusion injury in vivo. The hearts of the Wistar rats were subjected to 30 min of ischemia and 10 min of reperfusion in vivo. Different doses of EGb 761 (25, 50, 100, 200 mg/kg i.p.), superoxide dismutase (SOD, 10(4) U/kg), l-arginine (50 mg/kg i.p.) and nitric oxide synthase (NOS) inhibitor NG-nitro-l-arginine (NNA, 50 mg/kg i.p.) were administered to the ischemia-reperfusion rats. EGb 761 under the dose of 100 mg/kg increased the signal intensity of NOFe2+(DETC)2 complex, while EGb 761 at 200 mg/kg showed an effect of decreasing the signal intensity of NOFe2+(DETC)2 complex. EGb 761 inhibited the formation of TBARS, the release of CK, and mitigated the incidence of ventricular arrhythmias in a dose dependent way. Both l-arginine and SOD increased the signal intensity of NOFe2+(DETC)2 complex and inhibited the formation of TBARS, the leakage of CK and the incidence of ventricular arrhythmia. NNA not only had no protective effects on myocardial injury, but also increased the incidence of reperfusion-induced arrhythmia. In conclusion, EGb 761 has cardiovascular protective effects by means of adjusting the level of NO and inhibiting oxygen free radicals induced lipid peroxidation in myocardial ischemia-reperfusion injury in vivo. 相似文献
In this paper, the photocatalytic activity of industrial titanium dioxide (TiO2) based nacreous pigments was researched as functional building materials for photocatalytic NO remove. Three industrial TiO2 based nacreous pigments were selected to estimate the photocatalytic activity for NO remove. This study is a good proof that pearlescent pigments can eliminate NO, and its performance is positively correlated with its titanium dioxide content. And this research will widen the application of nacreous pigments in functional building materials, and provide a new way to eliminate in door nitric oxide pollution. 相似文献
The northwestern Pacific Ocean is a complex region with significant biological spatial variations on a seasonal timescale. To investigate the joint variation patterns on both seasonal and interannual timescales, a season-reliant empirical orthogonal function (S-EOF) analysis was applied to seasonal mean chlorophyll-a concentration (chl-a) anomalies in the northwestern Pacific Ocean during the period 1998–2010. The first two dominant modes accounted for nearly 31% of the total interannual variance, with the second S-EOF mode (S-EOF2) lagging behind the first S-EOF mode (S-EOF1) by one year. S-EOF1 featured a strong variation pattern to the north of 30° N, with maximum chl-a in winter and minimum chl-a in summer. However, S-EOF2 indicated an opposite seasonally evolving pattern compared with S-EOF1, with chl-a increasing along the Kuroshio and extension current from boreal winter to autumn. Both these modes revealed significant relationships with climate-related indices. The two modes corresponded to the central Pacific (CP) La Niña developing episodes and the turnaround from eastern Pacific (EP) La Niña to CP El Niño, respectively. Both modes were associated with the cold phase of the Pacific Decadal Oscillation, which played an important role in prolonging the impact of the El Niño/Southern Oscillation on chl-a seasonal evolution from 1998 to 2010. In addition, we discuss the possible factors dominating chl-a seasonal variation, in terms of the subregions of the northwestern Pacific Ocean. In the subtropical northwestern Pacific Ocean (15° N – 30° N), the chl-a growth was primarily nutrient-limited, whereas in the mid-latitude northwestern Pacific Ocean (35° N – 50° N), the chl-a growth was mainly light-limited. 相似文献
Titanium dioxide (TiO2) nanotube arrays were prepared by electrochemical anodization of titanium sheets in the glycerol 176 mL/H2O 44 mL/NH4F 0.5 wt% electrolytes modified with H2SO4 and NaAc addition. The surface morphologies, average inner diameter, and the length of the nanotube arrays changed with the solution pH in the range from 5.6 to 4.0 by adding H2SO4. A uniform surface morphology of the nanotubes with average inner diameter of ∼80 nm and a length of ∼1000 nm was obtained when the solution pH was 5.0. The growth rates of the nanotubes were remarkably enhanced by NaAc addition in the range of 0.04–0.14 M . With NaAc addition of 0.10 M , the length of the nanotube arrays reached 4.16 μm after an 8-h anodization, increasing 3.23 μm compared with no NaAc addition. The relationship between solution pH and growth of TiO2 nanotubes was analyzed by current–time curves, solution electrical conductivities, and scanning electron microscopy (SEM), and the role of NaAc was also discussed based on SEM and solution electrical conductivities. 相似文献
Classical haptic teleoperation systems heavily rely on operators’ intelligence and efforts in aerial robot navigation tasks, thereby posing significantly users’ workloads. In this paper, a novel shared control scheme is presented facilitating a multirotor aerial robot haptic teleoperation system that exhibits autonomous navigation capability. A hidden Markov model filter is proposed to identify the intention state of operator based on human inputs from haptic master device, which is subsequently adopted to derive goal position for a heuristic sampling based local path planner. The human inputs are considered as commanded velocity for a trajectory servo controller to drive the robot along the planned path. In addition, vehicle velocity is perceived by the user via haptic feedback on master device to enhance situation awareness and navigation safety of the user. An experimental study was conducted in a simulated and a physical environment, and the results verify the effectiveness of the novel scheme in safe navigation of aerial robots. A user study was carried out between a classical haptic teleoperation system and the proposed approach in the identical simulated complex environment. The flight data and task load index (TLX) are acquired and analyzed. Compared with the conventional haptic teleoperation scheme, the proposed scheme exhibits superior performance in safe and fast navigation of the multirotor vehicle, and is also of low task and cognitive loads.