首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   186249篇
  免费   25179篇
  国内免费   6898篇
电工技术   9357篇
技术理论   3篇
综合类   8355篇
化学工业   39475篇
金属工艺   8813篇
机械仪表   10703篇
建筑科学   10947篇
矿业工程   3280篇
能源动力   5943篇
轻工业   17146篇
水利工程   3074篇
石油天然气   4927篇
武器工业   1284篇
无线电   26951篇
一般工业技术   30426篇
冶金工业   10009篇
原子能技术   2158篇
自动化技术   25475篇
  2024年   382篇
  2023年   1719篇
  2022年   3201篇
  2021年   5361篇
  2020年   4978篇
  2019年   5989篇
  2018年   6459篇
  2017年   7150篇
  2016年   7671篇
  2015年   8776篇
  2014年   10611篇
  2013年   13894篇
  2012年   12841篇
  2011年   14044篇
  2010年   12877篇
  2009年   12652篇
  2008年   12123篇
  2007年   11309篇
  2006年   10400篇
  2005年   8479篇
  2004年   6955篇
  2003年   6044篇
  2002年   5872篇
  2001年   4905篇
  2000年   4243篇
  1999年   3057篇
  1998年   3106篇
  1997年   2208篇
  1996年   1820篇
  1995年   1472篇
  1994年   1124篇
  1993年   991篇
  1992年   699篇
  1991年   664篇
  1990年   542篇
  1989年   520篇
  1988年   389篇
  1987年   334篇
  1986年   313篇
  1985年   255篇
  1984年   220篇
  1983年   178篇
  1982年   169篇
  1981年   150篇
  1980年   143篇
  1979年   110篇
  1978年   99篇
  1977年   132篇
  1976年   161篇
  1975年   81篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
171.
172.
Class I hydrophobin Vmh2, a peculiar surface active and versatile fungal protein, is known to self‐assemble into chemically stable amphiphilic films, to be able to change wettability of surfaces, and to strongly adsorb other proteins. Herein, a fast, highly homogeneous and efficient glass functionalization by spontaneous self‐assembling of Vmh2 at liquid–solid interfaces is achieved (in 2 min). The Vmh2‐coated glass slides are proven to immobilize not only proteins but also nanomaterials such as graphene oxide (GO) and quantum dots (QDs). As models, bovine serum albumin labeled with Alexa 555 fluorophore, anti‐immunoglobulin G antibodies, and cadmium telluride QDs are patterned in a microarray fashion in order to demonstrate functionality, reproducibility, and versatility of the proposed substrate. Additionally, a GO layer is effectively and homogeneously self‐assembled onto the studied functionalized surface. This approach offers a quick and simple alternative to immobilize nanomaterials and proteins, which is appealing for new bioanalytical and nanobioenabled applications.  相似文献   
173.
A facile sol–gel procedure has been developed for the synthesis of colloidal alumina nanocrystals. For the first time, optical characterization procedures were employed to study the quantum confinement effects in optical properties of the prepared Al2O3 sol. Accordingly, the hyperbolic band model was used to determine the optical band gap of colloidal alumina nanocrystals. X‐Ray diffraction pattern was used to study the crystallographic phase of the dried gel. Morphological characterization was performed using scanning electron microscopy (SEM). Inductively Coupled Plasma (ICP) emission spectroscopy was used to determination purity of the Al2O3 powder. High‐resolution TEM showed that the diameter of colloidal nanocrystals is about 10 nm. Photoluminescence spectroscopy demonstrated that quantum yields for colloidal nanocrystals are 68% with 300 nm excitation wavelength. The experimental observations confirm that highly stable alumina sol with strong UV emission was synthesized. The mentioned optical properties have not been reported before.  相似文献   
174.
175.
We present a distribution‐free tabular cumulative sum chart for monitoring the variability of an autocorrelated process. A quantity known as the asymptotic variance parameter is employed as a measure of the variability, and a distribution‐free tabular cumulative sum chart is applied to variance estimates calculated from batches of nonoverlapping samples. The proposed chart is applicable to a stationary process with a general marginal distribution and a general autocorrelation structure. It also determines control limits analytically without trial‐and‐error simulations. The performance of the proposed chart is tested on stationary processes with both normal and nonnormal marginals with various autocorrelation structures. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
176.
Poor strength, infection, leakage, long procedure times, and inflammation limit the efficacy of common tissue sealing devices in surgeries and trauma. Light-activated sealing is attractive for tissue sealing and repair, and can be facilitated by the generation of local heat following absorption of nonionizing laser energy by chromophores. Here, the inherent ability of biomaterials is exploited to absorb nonionizing, mid-infrared (midIR) light in order to engender rapid photothermal sealing and repair of soft tissue wounds. In this approach, the biomaterial simultaneously acts as a photothermal convertor as well as a biosealant, which dispenses the need for exogeneous light-absorbing nanoparticles or dyes. Biomechanical recovery, mathematical modeling, histopathology analyses, tissue strain mapping using digital imaging correlation, and visualization of the biosealant-tissue interface using hyperspectral imaging indicate superior performance of midIR sealing in live mice compared to conventional sutures and glue. The midIR-biosealant approach demonstrates rapid sealing of soft tissues, improves cosmesis, lowers potential for scarring, obviates safety concerns because of the nonionizing light used, and allows adoption of a wide diversity of biomaterials. Taken together, the studies demonstrate a novel advance both in biomaterials for surgical sealing along with the use of nonionizing midIR light, with high potential for clinical translation.  相似文献   
177.
178.
Over the past few decades, crystalline silicon solar cells have been extensively studied due to their high efficiency, high reliability, and low cost. In addition, these types of cells lead the industry and account for more than half of the market. For the foreseeable future, Si will still be a critical material for photovoltaic devices in the solar cell industry. In this paper, we discuss key issues, cell concepts, and the status of recent high-efficiency crystalline silicon solar cells.  相似文献   
179.
Since researchers began studying the mechanism of flavonoids’ anticancer activity, little attention has been focused on the modulation of redox state in cells as a potential chemotherapeutic strategy. However, recent studies have begun identifying that the anticancer effect of flavonoids occurs both in their antioxidative activity which scavenges ROS and their prooxidative activity which generates ROS. Against this backdrop, this study attempts to achieve a comprehensive analysis of the individual and separate study findings regarding flavonoids’ modulation of redox state in cancer cells. It focuses on the mechanism behind the anticancer effect, and mostly on the modulation of redox potential by flavonoids such as quercetin, hesperetin, apigenin, genistein, epigallocatechin-3-gallate (EGCG), luteolin and kaempferol in both in vitro and animal models. In addition, the clinical applications of and bioavailability of flavonoids were reviewed to help build a treatment strategy based on flavonoids’ prooxidative potential.  相似文献   
180.
Vegetable soup (VS), a plant-based functional food, has been used as a traditional folk medicine and is attracting attention for its ability to enhance the immune response. β-Glucan, a well-established and effective immunomodulator, has synergistic effects when used in combination with some bioactive compounds. In the present study, we aimed to evaluate the synergistic immunomodulatory effects of the combination of VS and β-glucan on macrophage-mediated immune responses. β-Glucan was demonstrated to synergistically enhance the VS-stimulated immune response, including the production of interleukin-6, tumor necrosis factor-α, and nitric oxide, mainly through the mitogen-activated protein kinase pathway in macrophages. In addition, this combination has the potential for further development in functional foods with immune-enhancing activity.Supplementary InformationThe online version contains supplementary material available at 10.1007/s10068-021-00888-x.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号