排序方式: 共有93条查询结果,搜索用时 15 毫秒
41.
Rajesh Munirathinam Jurriaan Huskens Willem Verboom 《Advanced Synthesis \u0026amp; Catalysis》2015,357(6):1093-1123
This review surveys the recent developments to perform heterogeneous catalysis in continuous‐flow microreactors. Three different types, namely, (i) packed‐bed, (ii) monolithic, and (iii) wall‐coated approaches are discussed to implement various kinds of catalysts in a microreactor. In addition, the applications of these supported catalysts to perform a variety of organic reactions are described. Furthermore, advantages of catalytic microreactors over classical batch reactors on one or more aspects of the reaction, such as rate, conversion, selectivity, and enantioselectivity are presented.
42.
Yao Lu Giulia Allegri Jurriaan Huskens 《Small (Weinheim an der Bergstrasse, Germany)》2023,19(23):2370169
Recruitment of receptors at membrane interfaces is essential in biological recognition and uptake processes. The interactions that induce recruitment are typically weak at the level of individual interaction pairs, but are strong and selective at the level of recruited ensembles. Here, a model system is demonstrated, based on the supported lipid bilayer (SLB) that mimics the recruitment process induced by weakly multivalent interactions. The weak (mm range) histidine-nickel-nitrilotriacetate (His2-NiNTA) pair is employed owing to its ease of implementation in both synthetic and biological systems. The recruitment of receptors (and ligands) induced by the binding of His2-functionalized vesicles on NiNTA-terminated SLBs is investigated to identify the ligand densities necessary to achieve vesicle binding and receptor recruitment. Threshold values of ligand densities appear to occur in many binding characteristics: density of bound vesicles, size and receptor density of the contact area, and vesicle deformation. Such thresholds contrast the binding of strongly multivalent systems and constitute a clear signature of the superselective binding behavior predicted for weakly multivalent interactions. This model system provides quantitative insight into the binding valency and effects of competing energetic forces, such as deformation, depletion, and entropy cost of recruitment at different length scales. 相似文献
43.
Probing Membrane Viscosity and Interleaflet Friction of Supported Lipid Bilayers by Tracking Electrostatically Adsorbed,Nano‐Sized Vesicles 下载免费PDF全文
Seyed R. Tabaei Jurriaan J. J. Gillissen Nam‐Joon Cho 《Small (Weinheim an der Bergstrasse, Germany)》2016,12(46):6338-6344
Particle tracking is used to measure the diffusional motion of nanosized (≈100 nm), lipid vesicles that are electrostatically adsorbed onto a solid supported lipid bilayer. It is found that the motion of membrane‐adhering vesicles is Brownian and depends inversely on the vesicle size, but is insensitive to the vesicle surface charge. The measured diffusivity agrees well with the Evans–Sackmann model for the diffusion of inclusions in supported, fluidic membranes. The agreement implies that the vesicle motion is coupled to that of a nanoscopic lipid cluster in the upper leaflet, which slides over the lower leaflet. The diffusivity of membrane‐adhering vesicles is therefore predominantly governed by the interleaflet friction coefficient, while the diffusivity of single lipids is mainly governed by the membrane viscosity. Combined with fluorescence recovery after photobleaching analysis, the interleaflet friction coefficient and the membrane viscosity are determined by applying the Evans–Sackmann model to the measured diffusivity of membrane adhering vesicles and that of supported membrane lipids. This approach provides an alternative to existing methods for measuring the interleaflet friction coefficient and the membrane viscosity. 相似文献
44.
45.
Sofie G Lemmens Eveline A Martens Jurriaan M Born Mieke J Martens Margriet S Westerterp-Plantenga 《Nutrition journal》2011,10(1):136
Background
Consumption of meals with different macronutrients, especially high in carbohydrates, may influence stress-related eating behavior. We aimed to investigate whether consumption of high-protein vs. high-carbohydrate meals influences stress-related mood, food reward, i.e. 'liking' and 'wanting', and post-meal energy intake.Methods
Participants (n = 38, 19m/19f, age = 25 ± 9 y, BMI = 25.0 ± 3.3 kg/m2) came to the university four times, fasted, once for a stress session receiving a high-protein meal, once for a rest session receiving a high-protein meal, once for a stress session receiving a high-carbohydrate meal and once for a rest session receiving a high-carbohydrate meal (randomized cross-over design). The high-protein and high-carbohydrate test meals (energy percentage protein/carbohydrate/fat 65/5/30 vs. 6/64/30) matched for energy density (4 kJ/g) and daily energy requirements (30%). Stress was induced using an ego-threatening test. Pre- and post-meal 'liking' and 'wanting' (for bread, filling, drinks, dessert, snacks, stationery (non-food alternative as control)) was measured by means of a computer test. Following the post-meal 'wanting' measurement, participants received and consumed their wanted food items (post-meal energy intake). Appetite profile (visual analogue scales), mood state (Profile Of Mood State and State Trait Anxiety Inventory questionnaires), and post-meal energy intake were measured.Results
Participants showed increased feelings of depression and anxiety during stress (P < 0.01). Consumption of the test meal decreased hunger, increased satiety, decreased 'liking' of bread and filling, and increased 'liking' of placebo and drinks (P < 0.0001). Food 'wanting' decreased pre- to post-meal (P < 0.0001). The high-protein vs. high-carbohydrate test meal induced lower subsequent 'wanting' and energy intake (1.7 ± 0.3 MJ vs. 2.5 ± 0.4 MJ) only in individuals characterized by disinhibited eating behavior (factor 2 Three Factor Eating Questionnaire, n = 16), during rest (P ≤ 0.01). This reduction in 'wanting' and energy intake following the high-protein meal disappeared during stress.Conclusions
Consumption of a high-protein vs. high-carbohydrate meal appears to have limited impact on stress-related eating behavior. Only participants with high disinhibition showed decreased subsequent 'wanting' and energy intake during rest; this effect disappeared under stress. Acute stress overruled effects of consumption of high-protein foods.Trial registration
The study was registered in the Dutch Trial Register (NTR1904). The protocol described here in this study deviates from the trial protocol approved by the Medical Ethical Committee of the Maastricht University as it comprises only a part of the approved trial protocol.46.
Exposure of food products to small-intestinal-like Caco-2 cells, combined with a gene expression based response analysis can be a valuable tool to classify potential bioactive effects of food homogenates. In order to study changes in gene expression upon food exposure, a robust set of stably expressed genes is required for normalization. Here we present a set of reference genes suitable for RT-qPCR that has been validated for exposure studies with the intestinal-like Caco-2 cell line. This study identified ribosomal phosphoprotein P0 (RPLP0) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as best reference genes. The set can be extended with β-2-microglobulin (B2M), splicing factor 3A, subunit 1 (SF3A1), and mitochondrial ribosomal protein L19 (MRPL19). Food homogenates did provoke responses in the Caco-2 cells, as was demonstrated by changed expression of NAD(P)H Quinone dehydrogenase 1 (NQO1), Claudin 4 (CLDN4), Nitric Oxide Synthase 2 (NOS2), and ATP-binding cassette, subfamily B, member 1 (ABCB1) in the same experiment. Results indicate that: i) natural food homogenates can exert effects in Caco-2 cells, and ii) stability in expression of the reference genes is not due to a lack of response of the Caco-2 cells. 相似文献
47.
Nicole Herzer Jurriaan H. K. van Schaik Stephanie Hoeppener Ulrich S. Schubert 《Advanced functional materials》2010,20(19):3252-3259
The electrochemical oxidation process of self‐assembled monolayers formed by n‐octadecyltrichlorosilane (OTS) molecules on silicon wafers has been studied in a droplet of water by means of in situ water contact angle measurements. The application of different bias voltages between the substrate and a counter electrode placed into the droplet resulted in changes of the chemical nature of the monolayer, which yielded a significant alteration of the surfaces properties. Due to the changes of the wetting properties of the monolayer during the electro‐oxidation process a change in the contact angles of the water droplet is concomitantly observed. This allows the in situ monitoring of the electro‐oxidation process for large modified areas of several millimeters in diameter. The chosen approach represents an easy way to screen the major parameters that influence the oxidation process. Afterwards, the oxidized regions are characterized by Fourier‐transform infrared (FT‐IR) spectroscopy, X‐ray photoelectron spectroscopy (XPS) measurements, and atomic force microscopy (AFM) investigations to obtain more information about the electro‐oxidation process. The observations are correlated to experimental results obtained for oxidations performed on a smaller dimension range in the water meniscus of a conductive, biased AFM tip. A good correlation of the results in the different dimension ranges could be found. 相似文献
48.
Ludden MJ Péter M Reinhoudt DN Huskens J 《Small (Weinheim an der Bergstrasse, Germany)》2006,2(10):1192-1202
Streptavidin (SAv) is attached to beta-cyclodextrin (beta-CD) self-assembled monolayers (SAMs) via orthogonal host-guest and SAv-biotin interactions. The orthogonal linkers consist of a biotin functionality for binding to SAv and adamantyl functionalities for host-guest interactions at beta-CD SAMs. SAv complexed to excess monovalent linker in solution and then attached to a beta-CD SAM could be removed by rinsing with a 10 mM beta-CD solution. When SAv was attached to the beta-CD SAM via the divalent linker, it was impossible to remove SAv from the surface by the same rinsing procedure. This is interpreted by assuming that two SAv binding pockets are oriented towards the beta-CD SAM resulting in (labile) divalent and (stable) tetravalent beta-CD-adamantyl interactions for the mono- and divalent linkers, respectively. This was confirmed by experiments at varying beta-CD concentrations. When the [linker]/[SAv] ratio is reduced, a clear trend in the divalent-linker case is seen: the less linker the more protein could be removed from the surface. It is proven that the orthogonality of the binding motifs and the stability of the divalent linker at the beta-CD SAM allows the stepwise assembly of the complex at the beta-CD SAM by first adsorbing the linker, followed by SAv. This stepwise assembly allows the controlled heterofunctionalization of surface-immobilized SAv. 相似文献
49.
Mulder A Onclin S Péter M Hoogenboom JP Beijleveld H ter Maat J García-Parajó MF Ravoo BJ Huskens J van Hulst NF Reinhoudt DN 《Small (Weinheim an der Bergstrasse, Germany)》2005,1(2):242-253
Three compounds bearing multiple adamantyl guest moieties and a fluorescent dye have been synthesized for the supramolecular patterning of beta-cyclodextrin (CD) host monolayers on silicon oxide using microcontact printing and dip-pen nanolithography. Patterns created on monolayers on glass were viewed by laser scanning confocal microscopy. Semi-quantitative analysis of the patterns showed that with microcontact printing approximately a single monolayer of guest molecules is transferred. Exposure to different rinsing procedures showed the stability of the patterns to be governed by specific supramolecular multivalent interactions. Patterns of the guest molecules created at CD monolayers were stable towards thorough rinsing with water, whereas similar patterns created on poly(ethylene glycol) (PEG) reference monolayers were instantly removed. The patterns on CD monolayers displayed long-term stability when stored under N(2), whereas patterns at PEG monolayers faded within a few weeks due to the diffusion of fluorescent molecules across the surface. Assemblies at CD monolayers could be mostly removed by rinsing with a concentrated CD solution, demonstrating the reversibility of the methodology. Patterns consisting of different guest molecules were produced by microcontact printing of one guest molecule and specific adsorption of a second guest molecule from solution to non-contacted areas, giving well-defined alternating assemblies. Fluorescent features of sub-micrometer dimensions were written using supramolecular dip-pen nanolithography. 相似文献
50.
Gyu Man Kim Beomjoon Kim Liebau M. Huskens J. Reinhoudt D.N. Brugger J. 《Journal of microelectromechanical systems》2002,11(3):175-181
A release technique that enables to lift microfabricated structures mechanically off the surface without using wet chemistry is presented. A self-assembled monolayer of dodecyl-trichlorosilane forms a very uniform ~1.5-nm-thick anti-adhesion coating on the silicon dioxide surface, on full wafer scale. The structural layers are formed directly onto the organic layer. They consist here of a 100-nm-thick aluminum film and a high-aspect ratio photoplastic SU-8 structure. After the microfabrication the structure can be lifted off the surface together with the aluminum layer. This generic technique was used to make a variety of novel structures. First, aluminum electrodes that are embedded in plastic are made using lithography, etching and surface transfer techniques. Second, using a patterned monolayer as defined by microcontact printing, resulted in a spatial variation of the surface adhesion forces. This was used to directly transfer the stamped pattern into a metal structure without using additional transfer etching steps. Third, the monolayer's ability to cover surface features down to nanometer scale was exploited to replicate sharp surface molds into metal coated photoplastic tips with ~30-nm radii for use in scanning probe instruments such as near-field optical techniques. The advantage compared to standard sacrificial layer techniques is the ability of replication at the nanoscale and the absence of etchants or solvents in the final process steps 相似文献