首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   0篇
电工技术   2篇
无线电   85篇
一般工业技术   4篇
  2007年   2篇
  2006年   4篇
  2005年   6篇
  2004年   5篇
  2003年   7篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   8篇
  1993年   1篇
  1991年   2篇
  1990年   8篇
  1989年   5篇
  1988年   5篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
排序方式: 共有91条查询结果,搜索用时 15 毫秒
31.
The use of coherent detection in analog optical links offers several advantages over direct detection: improved receiver sensitivity, inherent frequency translation, and the ability to utilize angle modulation and separate wavelength division multiplexed (WDM) signals. In this paper, we investigate an externally modulated coherent AM optical link. We study the dynamic range of the coherent AM link, considering receiver noise, laser phase noise, laser relative intensity noise (RIN), and system nonlinearities. With proper selection of the receiver's IF bandwidth, the coherent AM link can be made insensitive to the laser linewidth. For optical powers less than 5 mW, RIN of less than -160 dB/Hz reduces the spurious-free dynamic range (SFDR) by less than 3 db with the use of a balanced receiver. The external modulator nonlinearity is the dominant nonideal effect; it reduces the SFDR by 5-19 dB from the theoretical limit for 100% modulation index. We compare the performance of the coherent AM link with that of a conventional direct detection link for two applications: point-to-point links and distribution networks. When the received optical power is less than 1 mW, the coherent link can provide higher SFDR than the direct detection link. Thus, coherent links are well-suited for long distance point-to-point links and FM video distribution systems  相似文献   
32.
SUCCESS-DWA: a highly scalable and cost-effective optical access network   总被引:1,自引:0,他引:1  
Passive optical networks have been identified as promising access solutions that can open the first-mile bottleneck, bringing gigabits-per-second data rates to end users. Current TDM PONs enjoy low cost by sharing resources in time, but suffer from limited capacity. In the future, WDM technology may be employed to achieve high performance. In this article we introduce a novel PON employing dynamic wavelength allocation to provide bandwidth sharing across multiple physical PONs. Tunable lasers, arrayed waveguide gratings, and coarse/fine filtering combine to create a flexible new optical access solution. The network's excellent scalability can bridge the gap between conventional TDM PONs and WDM PONs. The powerful architecture is a promising candidate for next-generation optical access networks.  相似文献   
33.
The MAP sequential detection of optical signals is investigated. The problem is reduced to the N-ary orthogonal signal detection problem in which the counts measured are conditionally Poisson distributed. The MAP sequential data processing algorithm is synthesized, and its performance bounds are found. The results obtained are verified by means of computer simulation. The performance of the sequential algorithm is compared with that of the fixed-sample-size-algorithm. It is shown that the MAP sequential algorithm demands a substantially smaller average signal energy than the fixed-sample-size algorithm to achieve the same error probability.  相似文献   
34.
A simple technique for analyzing the sensitivity and bit-error-rate (BER) performance of direct-detection lightwave receivers using optical preamplifiers is presented. The analysis provides closed-form expressions for the system performance and includes the impact of phase noise. For a negligible linewidth, the theory predicts an average signal energy of 42.3 photons/bit at a BER of 10-9. For comparison, a more accurate analysis predicts an average signal energy of 38 photons/bit under the same conditions  相似文献   
35.
To reduce the initial introduction cost of fiber Raman amplifiers, a novel in-service wavelength-band upgrade scheme is proposed. In this scheme, new pump lasers are added to an existing Raman amplifier already carrying wavelength-division-multiplexing (WDM) signals, and all the pump laser driving currents are changed synchronously through the transient period, keeping the WDM signal gain unchanged, while increasing the gain in the new band. We experimentally proved the principle of the proposed scheme in both discrete and distributed Raman amplifiers, even with the existence of signal-gain saturation, nonlinear pump interaction, and pump power loss. We also confirmed error-free wavelength-band upgrade in an eight-channel-WDM transmission system.  相似文献   
36.
Upconversion pumping in the 14xx-nm range gives the thulium-doped fiber amplifier (TDFA) a 3-dB dynamic range of 15 dB, and transient power excursion much lower than the conventional erbium-doped fiber amplifier during dynamic wavelength add-drop, due to the energy transitions inherent to the Tm/sup 3+/ ion. For specific pumping scheme and operating conditions, gain increases with increasing signal input, a behavior significantly different from conventionally optical amplifiers. This phenomenon is studied experimentally and theoretically, and promises to provide insight for gain control algorithms for TDFAs under bursty traffic conditions in a metropolitan area network environment.  相似文献   
37.
The use of phase diversity homodyne receivers, which have excellent performance even when the laser linewidth is of the same order of magnitude as the bit rate, to construct coherent systems with semiconductor lasers and moderate bandwidth receivers is considered. Theoretical, experimental, and computer simulation results of a study of a linewidth homodyne phase-diversity receiver is presented. A 150-Mb/s system with an IF linewidth of more than 50% of the bit rate is investigated in depth and is experimentally shown to operate within 1.8 dB from its theoretical limit  相似文献   
38.
CORD: contention resolution by delay lines   总被引:10,自引:0,他引:10  
The implementation of optical packet-switched networks requires that the problems of resource contention, signalling and local and global synchronization be resolved. A possible optical solution to resource contention is based on the use of switching matrices suitably connected with optical delay lines. Signalling could be dealt with using subcarrier multiplexing of packet headers. Synchronization could take advantage of clock tone multiplexing techniques, digital processing for ultra-fast clock recovery, and new distributed techniques for global packet-slot alignment. To explore the practical feasibility and effectiveness of these key techniques, a consortium was formed among the University of Massachusetts, Stanford University, and GTE Laboratories. The consortium, funded by ARPA, has three main goals: investigating networking issues involved in optical contention resolution (University of Massachusetts), constructing an experimental contention-resolution optical (CRO) device (GTE Laboratories), and building a packet-switched optical network prototype employing a CRO and novel signaling/synchronization techniques (Stanford University). This paper describes the details of the project and provides an overview of the main results obtained so far  相似文献   
39.
A second-order optical phase-locked loop was constructed using 1320-nm diode-pumped miniature Nd:YAG ring lasers. Using the loop, a 140-Mb/s PSK homodyne transmission experiment was demonstrated over 28.6 km of single-mode fiber. With a loop natural frequency of 13 kHz and a damping factor of 0.6, the receiver sensitivity was -62.8 dBm, or 25 photons/bit. The authors believe this is the highest sensitivity obtained to date with any optical communication system  相似文献   
40.
A 150 Mbit/s ASK phase-diversity homodyne receiver was constructed with a DFB laser emitting at 1550 nm. At a BER of 10-9, a sensitivity of -55 dBm, corresponding to 77 photoelectrons/bit, was measured  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号