首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   298篇
  免费   19篇
  国内免费   1篇
电工技术   2篇
综合类   2篇
化学工业   52篇
金属工艺   3篇
机械仪表   30篇
建筑科学   13篇
能源动力   14篇
轻工业   38篇
水利工程   1篇
无线电   31篇
一般工业技术   55篇
冶金工业   13篇
原子能技术   5篇
自动化技术   59篇
  2024年   1篇
  2023年   15篇
  2022年   23篇
  2021年   24篇
  2020年   22篇
  2019年   26篇
  2018年   33篇
  2017年   14篇
  2016年   12篇
  2015年   9篇
  2014年   14篇
  2013年   16篇
  2012年   11篇
  2011年   19篇
  2010年   7篇
  2009年   12篇
  2008年   14篇
  2007年   9篇
  2006年   7篇
  2005年   6篇
  2004年   5篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1999年   5篇
  1998年   2篇
  1995年   1篇
  1991年   2篇
  1985年   2篇
  1982年   1篇
  1981年   1篇
排序方式: 共有318条查询结果,搜索用时 15 毫秒
11.
In order to enhance the reusability, Rhizomucor miehei lipase was entrapped in a single step within silica particles having an oleic acid core (RML@SiO2). Characterization of RML@SiO2 by scanning and transmission electron microscopy and Fourier transform infrared studies supported the lipase immobilization within silica particles. The immobilized enzyme was employed for transesterification of cottonseed oil with methanol and ethanol. Under the optimum reaction conditions of a methanol‐to‐oil molar ratio of 12:1 or ethanol‐to‐oil molar ratio of 15:1, stirring speed of 250 revolutions/min (flask radius = 3 cm), reaction temperature of 40 °C, and biocatalyst concentration of 5 wt% (with respect to oil), more than 98 % alkyl ester yield was achieved in 16 and 24 h of reaction duration in case of methanolysis and ethanolysis, respectively. The immobilized enzyme did not require any buffer solution or organic solvent for optimum activity; hence, the produced biodiesel and glycerol were free from metal ion or organic molecule contamination. The activation energies for the immobilized enzyme‐catalyzed ethanolysis and methanolysis were found to be 34.9 ± 1.6 and 19.7 ± 1.8 kJ mol?1, respectively. The immobilized enzyme was recovered from the reaction mixture and reused in 12 successive runs without significant loss of activity. Additionally, RML@SiO2 demonstrated better reusability as well as stability in comparison to the native enzyme as the former did not lose the activity even upon storage at room temperature (25–30 °C) over an 8‐month period.  相似文献   
12.
Doxorubicin-loaded micelles were prepared from a copolymer comprising cholic acid (CA) and polyethyleneimine (PEI) for the delivery of antitumor drugs. The CA-PEI copolymer was synthesized via pairing mediated by N,N’-dicyclohexylcarbodiimide and N-hydroxysuccinimide using dichloromethane as a solvent. Fourier transform infrared and nuclear magnetic resonance analyses were performed to verify the formation of an amide linkage between CA and PEI and doxorubicin localization into the copolymer. Dynamic light scattering and transmission electron microscopy studies revealed that the copolymer could self-assemble into micelles with a spherical morphology and an average diameter of <200 nm. The CA-PEI copolymer was also characterized by X-ray diffraction and differential scanning calorimetry. Doxorubicin-loaded micelles were prepared by dialysis method. A drug release study showed reduced drug release with escalating drug content. In a cytotoxicity assay using human colorectal adenocarcinoma (DLD-1) cells, the doxorubicin-loaded CA-PEI micelles exhibited better antitumor activity than that shown by doxorubicin. This is the first study on CA-PEI micelles as doxorubicin carriers, and this study demonstrated that they are promising candidates as carriers for sustained targeted antitumor drug delivery system.  相似文献   
13.
A new double-open-cubane core Cd(II)-O-Cu(II) bimetallic ligand mixed cluster of type [Cl2Cu4Cd2(NNO)6(NN)2(NO3)2].CH3CN was made available in EtOH/CH3CN solution. The 1-hydroxymethyl-3,5-dimethylpyrazole (NNOH) and 3,5-dimethylpyrazole (NNH) act as N,O-polydentate anion ligands in coordinating the Cu(II) and Cd(II) centers. The structure of the cluster in the solid state was proved by XRD study and confirmed in the liquid state by UV-vis analysis. The XRD result supported the construction of two octahedral and one square pyramid geometries types around the four Cu(II) centers and only octahedral geometry around Cd(II) two centers. Interestingly, NNOH ligand acts as a tetra-µ3-oxo and tri-µ2-oxo ligand; meanwhile, the N-N in NNH acts as classical bidentate anion/neutral ligands. The interactions in the lattice were detected experimentally by the XRD-packing result and computed via Hirschfeld surface analysis (HSA). The UV-vis., FT-IR and Energy Dispersive X-ray (EDX), supported the desired double-open cubane cluster composition. The oxidation potential of the desired cluster was evaluated using a 3,5-DTB-catechol 3,5-DTB-quinone as a catecholase model reaction.  相似文献   
14.
The repeated use of cooking oils and ghee for the deep frying of food materials may affect their nutritional quality. The present study evaluated the effect of repeated frying on the physicochemical characteristics and antiradical potential of canola oil and ghee. The oil and ghee were used for frying of fish and chicken for 2, 4, 6, 8, and 10 frying cycles followed by the analysis of physicochemical, oxidative stress, and antiradical parameters. Regression analysis of the data showed a frying cycle-dependent significant linear increase in saponification (R2 = 0.9507–0.9748), peroxide and acid values (R2 = 0.956–0.9915), and malondialdehyde (MDA) production (R2 = 0.9058–0.9557) of canola oil and ghee subjected to fish and chicken frying but exponential increase in saponification value (R2 = 0.9778) and MDA production (R2 = 0.7407) of canola oil and ghee used for fish frying. The increase in the number of frying cycles linearly decreased the iodine value (R2 = 0.9781–0.9924), and 1, 1-diphenyl-2-picrylhydrazyl, hydroxyl, and 2, 2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) radical scavenging potential (R2 = 0.9089–0.9979) of canola oil and ghee. Repeated frying in cooking oil and ghee increases oxidative stress and decreases their physicochemical and antioxidant qualities. Canola oil was comparatively more oxidative resistant than canola ghee. The regression equations derived from regression analysis will guide researchers to conduct similar types of univariate studies.  相似文献   
15.
Sustainable electrified aircraft propulsion (EAP) is likely to lead to an increase in the electrical wiring contained within a single aircraft. Since the electrical resistance and mass of copper (Cu) conductors are associated with power losses, it is desirable to design high-conductivity lightweight conductor materials, thus reducing the mass of components like motor windings, low-voltage signal cables, and transmission cables for data and power to improve the overall energy efficiency. This paper describes a unique framework for manufacturing metalized carbon nanotube (CNT) composite conductors, measuring their electrical conductivity and strength, and modeling the overall conductivity and current sharing within such composites. Tensile testing was conducted on the processed composite conductor cables with the use of acoustic emission and electrical resistivity to determine stress-dependent-failure mechanisms while monitoring the electrical conductivity. The average of measured electrical conductivities of annealed Cu/CNT samples from batch 5 was greater than theoretical predictions by 9.8 percent and was also greater than the conductivity of pure annealed Cu by 4.8 percent and had comparable ultimate tensile strengths. Additionally, those Cu/CNT samples provide a 13.5% weight saving over current state of the art copper wires. Theories explaining improved intrinsic conductivity are discussed.  相似文献   
16.
17.
Epoxidized methyl esters (EMO) with their high oxirane ring reactivity, acts as a raw material in the synthesis of various industrial chemicals including polymers, stabilizers, plasticizers, glycols, polyols, carbonyl compounds, biolubricants etc. EMO has been generally quantified by the gas chromatography (GC) and high-performance liquid chromatography (HPLC) techniques. Taking into the account of the limitations of these techniques, two qHNMR-based equations have been proposed for the quantification of EMO in the mixture of EMO and methylesters (MO). The validity of the proposed method was determined using standard mixtures of MO and EMO having different molar concentrations. The developed equations have been applied on the samples of EMO prepared from oleic acid in two-step process viz., esterification followed by epoxidation. The qHNMR-based EMO quantification showed acceptable agreement with the results obtained from HPLC analysis.  相似文献   
18.
There are considerable data in the literature dealing with deformation mechanisms in AZ31 sheets. However, there is little information on the damage and fracture processes in this material. In this contribution, digital image correlation is used to follow deformation patterns occurring during tensile and v-bending tests at room temperature. A variety of surface analysis techniques and three-dimensional x-ray tomography have been used to examine the relationship between deformation, damage initiation, and the final fracture processes. The results show that premature diffuse necking occurs in the tensile tests without transit into localized necking. Deformation twins cluster by an autocatalytic process to form shear bands serving as preferential sites for strain localization and crack initiation. Damage appears in the form of microcracks within the shear bands at a late stage of necking and lead to the final fracture. The presence and the distribution of second-phase particles and their distributions help accelerate the final fracture processes.  相似文献   
19.
An instrumented drop weight impact test was used to study the effect of thermal degradation on the impact properties of PVC compounds. The impact resistance of the aged compounds related well with their weight loss and hence, with thermal degradation. Each compound showed a specific weight loss percentage that correlated with a 50% loss in its impact properties (failure point), irrespective of the aging temperature. The results were also used to estimate a thermal index (TI) of each compound in a rapid and reliable way.  相似文献   
20.
The use of MgO impregnated with KOH as heterogeneous catalysts for the transesterification of mutton fat with methanol has been evaluated. The mutton fat (fat) with methanol (1:22 M ratio) at 65 °C showed > 98% conversion to biodiesel with 4 wt% of MgO–KOH-201 (MgO impregnated with 20 wt% of KOH) in 20 min. The reaction conditions optimized were; the amount of KOH impregnation (5–20 wt%), the amount of catalyst (1.5–4 wt%, catalyst/fat), the reaction temperature (45–65 °C), fat to methanol molar ratio (1:11–1:22) and the effect of addition of water/oleic acid/palmitic acid (upto 1 wt%). Although, transesterification of fresh fat (moisture content 0.02 wt% and free fatty acids 0.002 wt%) with methanol in the presence of KOH (homogenous catalyst) resulted in the complete conversion to biodiesel, but in the presence of additional 1 wt% of either free fatty acid or moisture content, formation of soap was observed. The MgO–KOH-20 catalyst was found to tolerate additional 1 wt% of either the moisture or FFAs in the fat.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号