首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   277篇
  免费   23篇
电工技术   5篇
化学工业   73篇
金属工艺   15篇
机械仪表   20篇
建筑科学   6篇
能源动力   9篇
轻工业   12篇
水利工程   5篇
石油天然气   1篇
无线电   43篇
一般工业技术   61篇
冶金工业   12篇
原子能技术   4篇
自动化技术   34篇
  2023年   5篇
  2022年   3篇
  2021年   6篇
  2020年   5篇
  2019年   6篇
  2018年   11篇
  2017年   9篇
  2016年   13篇
  2015年   3篇
  2014年   13篇
  2013年   26篇
  2012年   20篇
  2011年   19篇
  2010年   16篇
  2009年   13篇
  2008年   15篇
  2007年   13篇
  2006年   13篇
  2005年   11篇
  2004年   13篇
  2003年   10篇
  2002年   9篇
  2001年   8篇
  2000年   6篇
  1999年   4篇
  1998年   10篇
  1997年   6篇
  1996年   7篇
  1995年   1篇
  1993年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
排序方式: 共有300条查询结果,搜索用时 15 毫秒
61.
62.
63.
64.
Kitae Yeom 《Fuel》2007,86(4):494-503
The combustion characteristics and exhaust emissions in an engine were investigated under homogeneous charge compression ignition (HCCI) operation fueled with liquefied petroleum gas (LPG) and gasoline with regard to variable valve timing (VVT) and the addition of di-methyl ether (DME). LPG is a low carbon, high octane number fuel. These two features lead to lower carbon dioxide (CO2) emission and later combustion in an LPG HCCI engine as compared to a gasoline HCCI engine. To investigate the advantages and disadvantages of the LPG HCCI engine, experimental results for the LPG HCCI engine are compared with those for the gasoline HCCI engine. LPG was injected at an intake port as the main fuel in a liquid phase using a liquefied injection system, while a small amount of DME was also injected directly into the cylinder during the intake stroke as an ignition promoter. Different intake valve timings and fuel injection amount were tested in order to identify their effects on exhaust emissions and combustion characteristics. Combustion pressure, heat release rate, and indicated mean effective pressure (IMEP) were investigated to characterize the combustion performance. The optimal intake valve open (IVO) timing for the maximum IMEP was retarded as the λTOTAL was decreased. The start of combustion was affected by the IVO timing and the mixture strength (λTOTAL) due to the volumetric efficiency and latent heat of vaporization. At rich operating conditions, the θ90-20 of the LPG HCCI engine was longer than that of the gasoline HCCI engine. Hydrocarbon (HC) and carbon monoxide (CO) emissions were increased as the IVO timing was retarded. However, CO2 was decreased as the IVO timing was retarded. CO2 emission of the LPG HCCI engine was lower than that of the gasoline HCCI engine. However, CO and HC emissions of the LPG HCCI engine were higher than those of the gasoline HCCI engine.  相似文献   
65.
With the explosion of multimedia content, Internet bandwidth is wasted by repeated downloads of popular content. Recently, Content-Centric Networking (CCN), or the so-called Information-Centric Networking (ICN), has been proposed for efficient content delivery. In this paper, we investigate the performance of in-network caching for Named Data Networking (NDN), which is a promising CCN proposal. First, we examine the inefficiency of LRU (Least Recently Used) which is a basic cache replacement policy in NDN. Then we formulate the optimal content assignment for two in-network caching policies. One is Single-Path Caching, which allows a request to be served from routers only along the path between a requester and a content source. The other is Network-Wide Caching, which enables a request to be served from any router holding the requested content in a network. For both policies, we use a Mixed Integer Program to optimize the content assignment models by considering the link cost, cache size, and content popularity. We also consider the impact of link capacity and routing issues on the optimal content assignment. Our evaluation and analysis present the performance bounds of in-network caching on NDN in terms of the practical constraints, such as the link cost, link capacity, and cache size.  相似文献   
66.
The objective of this study is the rapid bulk combustion of mixture in a constant volume chamber with a tiny sub-chamber. Some narrow passage holes were arranged to induce simultaneous multi-point ignition in the main chamber by jet of burned and unburned gases including radicals from the sub-chamber, and the equivalence ratios of pre-mixture in the main chamber and the sub-chamber were the same. The principal factors of the Radical Induced Auto-Ignition (RIAl) method are the diameter of the passage holes and the volume of sub-chamber. The relationship between the sub-chamber and diameter of passage hole was represented by the ratios of sub-chamber volume to passage hole volume. The ratios are non-dimensional coefficients for sub-chamber characteristics. As a result, the RIAI method reduced the combustion period, which expanded the lean limit in comparison with SI method.  相似文献   
67.
Because an injected spray development process consists of impinging and free spray in the diesel engine, it is needed to analyze the impinging spray and free spray, simultaneously, in order to study the diesel spray behavior. To dominate combustion characteristics in diesel engine is interaction between injected fuel and ambient gas, that is, process of mixture formation. Also it is very important to analyze liquid and vapor phases of injected fuel on the investigation of mixing process, respectively and simultaneously. Therefore, in this study, the behavior characteristics of the liquid phase and the vapor phase of diesel spray was studied by using exciplex fluorescence method in high temperature and injection pressure field. Finally, it can be confirmed that the distribution of vapor concentration is more uniform in the case of the high injection than in that of the low injection pressure.  相似文献   
68.
The purpose of this study was to analyze the structure and to clarify the mixture formation process within evaporative diesel spray. Liquid fuel was injected from a single-hole nozzle (l/d=1.0mm/0.2mm) into a constant-volume vessel under high pressure and temperature in order to visualize the spray phenomena. An exciplex fluorescence method was applied to the evaporative fuel spray to measure and investigate both the liquid and the vapor phase of the injected spray. The region of interest in this experiment was downstream towards the end of the spray. For accurate investigation, images of the liquid and vapor phase regions were recorded with a 35mm still camera and CCD camera, respectively. For the case of the evaporative fuel spray, the images showed that within the region of liquid phase very small droplets could be found outside of the spray and larger droplets at the spray’s tip. This can be explained through the droplet classification defined byStokes number (stk) (Chung et al., 1990). From the 2-dimensional analysis results of the heterogeneous distribution of the inner spray, a 3-dimensional analysis was attempted by using the offset incidence of the laser beam from the spray’s center axis. Finally, in order to quantify the mixture’s state change within the vapor phase region of the injected spray, images analysis were carried out based on the entropy of statistical thermodynamics.  相似文献   
69.
Aqueous solutions containing high concentrations (circa 1000 mg/L) of benzene can be treated biologically through the intervention of organic 'sponges'. In reality these sponges are immiscible and biocompatible organic solvents that can be added in very low volumes, and act to draw benzene out of the aqueous phase, reducing levels appropriate for biological treatment. As the organisms consume benzene, the sponges release additional substrate to maintain an equilibrium relationship between the two phases, and this rate is determined by the metabolic activity of the cells. We have used 1‐actadsene as the organic sponge, and Klebsiella sp. as the degradative organism to consume 1000 mg/L of benzene in 12 h. By draining the aqueous phase to 10% of its original volume (and letting it serve as an inoculum), additional benzene solutions, at 1000 mg/L, can be reintroduced to the system, and the action of the sponge used a second, and subsequent times, to control benzene levels and benzene delivery to the organisms.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号