首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83590篇
  免费   947篇
  国内免费   407篇
电工技术   774篇
综合类   2316篇
化学工业   11375篇
金属工艺   4785篇
机械仪表   3014篇
建筑科学   2153篇
矿业工程   562篇
能源动力   1102篇
轻工业   3573篇
水利工程   1266篇
石油天然气   341篇
无线电   9232篇
一般工业技术   16273篇
冶金工业   2621篇
原子能技术   254篇
自动化技术   25303篇
  2020年   7篇
  2018年   14451篇
  2017年   13376篇
  2016年   9958篇
  2015年   605篇
  2014年   223篇
  2013年   192篇
  2012年   3131篇
  2011年   9391篇
  2010年   8268篇
  2009年   5536篇
  2008年   6762篇
  2007年   7769篇
  2006年   114篇
  2005年   1203篇
  2004年   1121篇
  2003年   1167篇
  2002年   533篇
  2001年   94篇
  2000年   175篇
  1999年   54篇
  1998年   51篇
  1997年   26篇
  1996年   45篇
  1995年   9篇
  1994年   11篇
  1993年   8篇
  1992年   12篇
  1991年   22篇
  1988年   9篇
  1969年   24篇
  1968年   43篇
  1967年   33篇
  1966年   42篇
  1965年   44篇
  1964年   11篇
  1963年   28篇
  1962年   22篇
  1961年   18篇
  1960年   30篇
  1959年   35篇
  1958年   37篇
  1957年   36篇
  1956年   34篇
  1955年   63篇
  1954年   68篇
  1953年   5篇
  1952年   6篇
  1950年   6篇
  1949年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Extrusions of hollow profiles with weld seams were conducted using the magnesium alloy ME21 applying various extrusion ratios. Subsequent analysis of the profiles’ microstructure was performed comparing weld free with weld seam containing material using (polarized) light optical microscopy (LOM). Additionally, the local texture and microstructure in the weld-free material as well as in the weld seam region has been examined with a scanning electron microscope coupled with electron backscatter diffraction technique (SEM-EBSD). The weld-free material and the weld seam are characterized by recrystallized microstructures, whereas few residual cast grains were identified. The local texture distinctively changes from the weld-free material to the weld seam. The texture of the weld-free material is comparable with the typical ME21 sheet texture. In the weld seam area, a pole density is found, which is distributed towards the transverse direction (TD) combined with a split and broadening of the pole density in the extrusion direction (ED). This texture influences the mechanical anisotropy due to the dependence of the activation of basal 〈a〉-slip and \( \{ 10\bar{1}2\} \;\langle 10\bar{1}1\rangle \)-extension twinning on the loading direction in favorably oriented grains.  相似文献   
992.
Dorina Stahl 《NTM》2016,24(3):279-308
At the end of the nineteenth century, after twelve years of intensive research, the ophthalmologist Theodor Leber (1840–1917) established the chemotaxis of leukocytes as part of inflammation research. Although at the time his theory was smoothly enlisted into immunological research, up until now his name has been connected to chemotaxis only in the English-language literature. Leber was able to use his experimental system to develop a theory of the chemical attraction of the leukocytes during inflammation processes by the beginning of the 1880s, but his unconventional methodology—introducing chemically neutral contaminants in order to trigger inflammation in the eyes of rabbits—contradicted the basic bacteriological Denkstil (style of thought) of inflammation research at the time. Leber held fast to his research practice, which consisted of closely interlocking experimental and theoretical work. Only when an opening appeared in the bacteriological Denkstil was Leber able to transform his experimental observations, written on loose sheets of paper, into convincing evidence for his theory of inflammation. This micro-historical reconstruction of Leber’s experimental and written work, based on his original lab protocols, opens up the research practice of a scientist who was not recognized by the established microbiological inflammation research of the time. Moreover, persistent factors in the generation of knowledge are revealed by connecting this micro-historical reconstruction with a macro-history analysis. Indeed Leber developed his specific paper technology in order to mobilise and stabilise the scientific findings gained through experiment because of the persistence of the bacteriological Denkstil.  相似文献   
993.
Fanger’s predicted mean vote (PMV) equation is the result of the combined quantitative effects of the air temperature, mean radiant temperature, air velocity, humidity activity level and clothing thermal resistance. PMV is a mathematical model of thermal comfort which was developed by Fanger. The uncertainty budget of the PMV equation was developed according to GUM in this study. An example is given for the uncertainty model of PMV in the exemplification section of the study. Sensitivity coefficients were derived from the PMV equation. Uncertainty budgets can be seen in the tables. A mathematical model of the sensitivity coefficients of \(T_{\mathrm{a}}\), \(h_{\mathrm{c}}\), \(T_{\mathrm{mrt}}\), \(T_{\mathrm{cl}}\), and \(P_{\mathrm{a}}\) is given in this study. And the uncertainty budgets for \(h_{\mathrm{c}}\), \(T_{\mathrm{cl}}\), and \(P_{\mathrm{a}}\) are given in this study.  相似文献   
994.
The ultrasonic attenuation due to phonon–phonon interaction, thermoelastic relaxation and dislocation damping mechanisms has been investigated in cerium monopnictides CeX (X: N, P, As, Sb and Bi) for longitudinal and shear waves along \({\langle }100{\rangle }\), \({\langle }110{\rangle }\) and \({\langle }111{\rangle }\) directions. The second- and third-order elastic constants of CeX have also been computed in the temperature range 0 K to 500 K using Coulomb and Born–Mayer potential upto second nearest neighbours. The computed values of these elastic constants have been applied to find out Young’s moduli, bulk moduli, Breazeale’s non-linearity parameters, Zener anisotropy, ultrasonic velocity, ultrasonic Grüneisen parameter, thermal relaxation time, acoustic coupling constants and ultrasonic attenuation. The fracture/toughness ratio is less than 1.75, which shows that the chosen materials are brittle in nature as found for other monopnictides. The drag coefficient acting on the motion of screw and edge dislocations due to shear and compressional phonon viscosities of the lattice have also been evaluated for both the longitudinal and shear waves. The thermoelastic loss and dislocation damping loss are negligible in comparison to loss due to Akhieser damping (phonon–phonon interaction). The obtained results for CeX are in qualitative agreement with other semi-metallic monopnictides.  相似文献   
995.
Here, the fundamental problem of Rayleigh–Taylor instability (RTI) is studied by direct numerical simulation (DNS), where the two air masses at different temperatures, kept apart initially by a non-conducting horizontal interface in a 2D box, are allowed to mix. Upon removal of the partition, mixing is controlled by RTI, apart from mutual mass, momentum, and energy transfer. To accentuate the instability, the top chamber is filled with the heavier (lower temperature) air, which rests atop the chamber containing lighter air. The partition is positioned initially at mid-height of the box. As the fluid dynamical system considered is completely isolated from outside, the DNS results obtained without using Boussinesq approximation will enable one to study non-equilibrium thermodynamics of a finite reservoir undergoing strong irreversible processes. The barrier is removed impulsively, triggering baroclinic instability by non-alignment of density, and pressure gradient by ambient disturbances via the sharp discontinuity at the interface. Adopted DNS method has dispersion relation preservation properties with neutral stability and does not require any external initial perturbations. The complete inhomogeneous problem with non-periodic, no-slip boundary conditions is studied by solving compressible Navier–Stokes equation, without the Boussinesq approximation. This is important as the temperature difference between the two air masses considered is high enough (\(\Delta T = 70\) K) to invalidate Boussinesq approximation. We discuss non-equilibrium thermodynamical aspects of RTI with the help of numerical results for density, vorticity, entropy, energy, and enstrophy.  相似文献   
996.
Although the photoacoustic effect is almost universally generated by radiation whose intensity is varied in time either by amplitude modulation of a continuous optical source or through the use of pulsed irradiation, it is possible to produce sound by movement of a continuous source in space. Here, the characteristics of sound production by movement of a light source in one dimension are discussed by solution to the wave equation for pressure. Solutions to the wave equation for the velocity potential, from which the acoustic pressure can be determined, are found using the D’Alembert integral and by Fourier transformation of the wave equation. The characteristics of the waveform generated by a Gaussian heat source moving uniformly in space are found to depend on the initial conditions for movement of the source.  相似文献   
997.
Colloidal quantum dots (CQDs) have attracted significant interest for applications in electronic and optoelectronic devices such as photodetectors, light-emitting diodes, and solar cells. However, a poor understanding of charge transport in these nanocrystalline films hinders their practical applications. The photocarrier radiometry (PCR) technique, a frequency-domain photoluminescence method spectrally gated for monitoring radiative recombination photon emissions while excluding thermal infrared photons due to non-radiative recombination, has been applied to PbS CQD thin films for the analysis of charge transport properties. Linear excitation intensity responses of PCR signals were found in the reported experimental conditions. The type and influence of trap states in the coupled PbS CQD thin film were analyzed with PCR temperature- and time-dependent results.  相似文献   
998.
A method for measuring the multi-wavelength emissivity of a steel surface is proposed, and an applicable experimental apparatus is designed. Multi-wavelength radiant energy emitted from a sample was measured using a fiber-optic spectrometer and its temperature measured using a NiCrSi/NiSiMg thermocouple. Utilizing the unique vacuum control and background noise-shielding systems, we investigated the multi-wavelength emissivity of GCr15 steel at three different degrees of surface oxidation at temperatures ranging from 1000 \(^{\circ }\)C to \(1100\,^{\circ }\)C. The experimental results show that the multi-wavelength (0.7 \(\upmu \)m–0.9 \(\upmu \)m) emissivity increased substantially, from 0.409–0.565 to 0.609–0.702, once the steel was oxidized. In addition, the emissivity increased slightly with increasing temperature, but the trends for emissivity and wavelength were similar. To measure the surface temperature of casting billets based on multi-wavelength thermometry, the functional relationships between emissivity and wavelength at different extents of oxidation were determined. Temperature measurements based on our technique were compared with those from common colorimetric thermometry. Our approach reduced the temperature fluctuation from \(\pm 23\,^{\circ }\)C to \(\pm 3.5\,^{\circ }\)C, indicating that a reliable measurement of the multi-wavelength emissivity of GCr15 steel is obtained using this experimental apparatus.  相似文献   
999.
In this paper, we report the biosynthesis and characterization of copper oxide nanoparticles from an aquatic noxious weed, Eichhornia crassipes by green chemistry approach. The aim of this work is to synthesize copper oxide nanoparticles by simple, cost-effective and ecofriendly method as an alternative to other available techniques. The synthesized copper oxide nanoparticles were characterized by UV–visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FESEM) and Energy dispersive X-ray spectroscopy (EDX) analyses. The synthesized particles were highly stable, spherical in shape with an average diameter of 28 ± 4 nm. The synthesized nanoparticles were then explored to antifungal activity against plant pathogens. Highest zone of inhibition were observed in 100 μg ml ? 1 of Eichhornia-mediated copper oxide nanoparticle against Fusarium culmorum and Aspergillus niger. This Eichhornia-mediated copper oxide nanoparticles were proved to be good antifungal agents against plant fungal pathogens.  相似文献   
1000.
We investigated double perovskite compounds of the form Sr 2 XOsO 6 (X = Li, Na, Ca) using the full-potential linearized augmented plane wave (FP-LAPW) method. For the exchange-correlation energy, Wu and Cohen generalized gradient approximation (WC-GGA), Perdew, Burke and Ernzerhof GGA (PBE-GGA), Engel and Vosko GGA (EV-GGA), and GGA plus Hubbard U-parameter (GGA + U) were used. The calculated structural parameters are in good agreement with the existing experimental results. Calculation of different elastic constants and elastic moduli reveals that these compounds are elastically stable and possess ductile nature. The GGA + U approach yields quite accurate results of the bandgap as compared with the simple GGA schemes. The density of states plot shows that Sr-4d, Os-5d and O-2p states predominantly contribute to the conduction and valence bands. Further, our results regarding to the magnetic properties of these compounds reveal their ferromagnetic nature. In addition, these compounds seem to possess half-metallic properties, making them useful candidates for applications in spintronics devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号