首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   10篇
  国内免费   1篇
化学工业   44篇
机械仪表   2篇
建筑科学   5篇
轻工业   13篇
无线电   7篇
一般工业技术   10篇
冶金工业   7篇
自动化技术   13篇
  2023年   2篇
  2022年   1篇
  2021年   5篇
  2020年   2篇
  2018年   8篇
  2017年   6篇
  2016年   2篇
  2014年   6篇
  2013年   6篇
  2012年   11篇
  2011年   8篇
  2010年   3篇
  2009年   3篇
  2008年   5篇
  2007年   4篇
  2006年   3篇
  2005年   3篇
  2004年   7篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1995年   2篇
  1994年   1篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
排序方式: 共有101条查询结果,搜索用时 15 毫秒
81.
Research in industry 4.0 is growing, driven by the innovations in production systems on a continuous basis. In this study, we identified the evolution of themes inherent in the industry 4.0 using a bibliometric software, namely SciMAT (Science Mapping Analysis Software Tool). The analyses included 1882 documents, 4231 keywords, and the relevant information was extracted based on frequency of co-occurrence of keywords. The clusters were plotted in two-dimensional strategic diagrams and analysed using the bibliometric indicators such as the number of publications, number of associated documents, and h-index. The results revealed that 2017 had the largest number of publications. Expert authors in the field and the periodicals that published the most were identified. The science mapping presented 31 clusters in which the most representative motor themes were CPS (Cyber-Physical System), IoT (Internet of Things), and Big Data. In addition, it was possible to identify fields with high investment of efforts by the scientific community such as the union between lean production and industry 4.0, production-centered CPS (CPPS), IoT (Industrial Internet of Things - IIoT), among others. The overlapping map showed an increase in the number of keywords from 338 to 1231 over the period of data. The map of scientific developments supported by an exhaustive research, it was possible to show the state of the art, the main challenges and perspectives for future research in the field of industry 4.0 such as Technology, Collaboration/Integration, Management and Implementation.  相似文献   
82.
Encapsulation of essential oils by in situ polymerization is commonly used to contain the oil and thus ensure its controlled release. Melamine resin formaldehyde is one of the most widely used shell materials due to its thermal and chemical stability. One of the factors that influences the properties of the capsules is the molar relationship between monomers. The effect of formaldehyde ? melamine (F/M) molar ratios 3, 4 and 6 on the nanoencapsulation, morphology and properties of nanocapsules was investigated. The morphology and particle size were investigated by the scanning electron microscopy and atomic force microscopy techniques. The composition of the formaldehyde ? melamine resins was determined by Fourier transform infrared spectroscopy, and the thermal stability of the nanocapsules was analysed by differential scanning calorimetry and thermogravimetric analysis. Increasing the formaldehyde content reduced the nanocapsules' chemical stability. The capsule sizes obtained were nanometric at all melamine ? formaldehyde ratios studied, with a non‐significant variation in particle size and shape. © 2017 Society of Chemical Industry  相似文献   
83.
The H2 reduction of RuO2 hydrate “dissolved” in 1-n-butyl-3-methylimidazolium ionic liquids with different counterions, hexafluorophosphate (BMI ? PF6), tetrafluoroborate (BMI ? BF4) and trifluoromethane sulfonate (BMI ? SO3CF3), is a simple and reproducible method for the preparation of ruthenium nanoparticles of 2.0–2.5?nm diameter size and with a narrow size distribution. The Ru nanoparticles were characterized by TEM and XRD. The isolated Ru nanoparticles are reoxidized in air, whereas they are less prone to oxidation when imbibed in the ionic liquids. These nanoparticles are active catalysts for the solventless or liquid–liquid biphasic hydrogenation of olefins under mild reaction conditions (4 atm, 75°C). The catalytic system composed of nanoparticles dispersed in BMI ? PF6 ionic liquid is very stable and can be reused several times without any significant loss in the catalytic activity. Total turnover numbers greater than 110 000 (based on total Ru) or 320 000 (corrected for exposed Ru atoms) were attained within 80?h for the hydrogenation of 1-hexene.  相似文献   
84.
85.
The negative environmental impacts of industrial activity have been felt day-to-day, encouraging global actions to reduce the waste generation of harmful and persistent pollutants. Microemulsion synthesis of silica-coated iron oxide magnetic nanoparticles offers a high potential for several applications; however the process generates hazardous wastes that are difficult to treat and dispose of. In this study, cyclohexane and methanol were separated using phase decantation, distillation, and temperature reduction. The recovered solvents were reused in the same synthesis more than 20 times and the recovered surfactant IGEPAL® CO-520 was reused twice, suggesting the method applied has potential for continuous recycling.  相似文献   
86.
87.
The kinetics and mechanisms of nanoparticulate amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite, were studied at a range of environmentally relevant temperatures (7.5-25 °C) using synchrotron-based in situ time-resolved Energy Dispersive X-ray Diffraction (ED-XRD) in conjunction with high-resolution electron microscopy, ex situ X-ray diffraction and infrared spectroscopy. The crystallization process occurs in two stages; firstly, the particles of ACC rapidly dehydrate and crystallize to form individual particles of vaterite; secondly, the vaterite transforms to calcite via a dissolution and reprecipitation mechanism with the reaction rate controlled by the surface area of calcite. The second stage of the reaction is approximately 10 times slower than the first. Activation energies of calcite nucleation and crystallization are 73±10 and 66±2 kJ mol(-1), respectively. A model to calculate the degree of calcite crystallization from ACC at environmentally relevant temperatures (7.5-40 °C) is also presented.  相似文献   
88.
The aim of the investigations was to analyze the influence of the temperature during the irradiation process of polypropylene on the molar mass, the formation of long chain branching and the final branching topology. A linear isotactic polypropylene homopolymer was modified by electron beam irradiation at different temperatures, with two irradiation doses to insert long chain branching. The samples were analyzed by size exclusion chromatography coupled with a multiangle laser light scattering detector, by differential scanning calorimetry, and by shear and elongational rheology. The shear and elongational flow behavior is discussed in terms of the influence of molecular parameters and used to analyze the topology of the irradiated samples. With increasing temperature, a slight reduction of the molar mass, an increase of long chain branching and an increase of crystallization temperature were found. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2770–2780, 2006  相似文献   
89.
正黄鸟在自己的树上歌唱,使我的心喜舞。我们两人住在一个村子里,这是我们的一份快乐。她心爱的一对小羊,到我园树的荫下吃草。它们若走进我的麦地,我就把它们抱在臂里。我们的村子名叫康遮那,人们管我们的小河叫安遮那。我的名字村人都知道,她的名字是软遮那。罗宾德拉纳特·泰戈尔,《园丁集》,1913年——冰心译  相似文献   
90.
Aggregation‐based crystal growth often gives rise to crystals with complex morphologies which cannot be generated via classical growth processes. Despite this, understanding of the mechanism is rather poor, particularly when organic additives or amorphous precursor phases are present. In this work, advantage is taken of the observation that aggregation‐based growth of calcium carbonate, and indeed many other minerals, is most often observed using diffusion‐based synthetic methods. By fully characterizing the widely used ammonia diffusion method (ADM)–which is currently used as a “black box”–the solution and supersaturation conditions which accompany CaCO3 precipitation using this method are identified and insight is gained into the nucleation and growth processes which generate calcite mesocrystals. This reveals that the distinguishing feature of the ADM is that the initial nucleation burst consumes only a small quantity of the available ions, and the supersaturation then remains relatively constant, and well above the solubility of amorphous calcium carbonate (ACC), until the reaction is almost complete. New material is thus generated over the entire course of the precipitation, a feature which appears to be fundamental to the formation of complex, aggregation‐based morphologies. Finally, the importance of this understanding is demonstrated using the identified carbonate and supersaturation profiles to perfectly replicate CaCO3 mesocrystals through slow addition of reagents to a bulk solution. This approach overcomes many of the inherent problems of the ADM by offering excellent reproducibility, enabling the synthesis of such CaCO3 structures in large‐scale and continuous‐flow systems, and ultimately facilitating in situ studies of assembly‐based crystallization mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号