首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2235篇
  免费   69篇
  国内免费   13篇
电工技术   29篇
综合类   6篇
化学工业   496篇
金属工艺   56篇
机械仪表   25篇
建筑科学   118篇
矿业工程   10篇
能源动力   96篇
轻工业   136篇
水利工程   6篇
石油天然气   15篇
无线电   158篇
一般工业技术   327篇
冶金工业   478篇
原子能技术   24篇
自动化技术   337篇
  2022年   29篇
  2021年   38篇
  2020年   25篇
  2019年   25篇
  2018年   33篇
  2017年   35篇
  2016年   32篇
  2015年   34篇
  2014年   48篇
  2013年   220篇
  2012年   71篇
  2011年   82篇
  2010年   90篇
  2009年   83篇
  2008年   94篇
  2007年   76篇
  2006年   56篇
  2005年   62篇
  2004年   50篇
  2003年   47篇
  2002年   41篇
  2001年   36篇
  2000年   20篇
  1999年   35篇
  1998年   74篇
  1997年   48篇
  1996年   49篇
  1995年   50篇
  1994年   38篇
  1993年   43篇
  1992年   28篇
  1991年   28篇
  1990年   36篇
  1989年   18篇
  1988年   22篇
  1987年   27篇
  1986年   33篇
  1985年   21篇
  1984年   30篇
  1983年   26篇
  1982年   28篇
  1981年   33篇
  1980年   20篇
  1979年   20篇
  1978年   19篇
  1977年   23篇
  1976年   18篇
  1975年   31篇
  1974年   19篇
  1973年   17篇
排序方式: 共有2317条查询结果,搜索用时 12 毫秒
81.
Organic solvent nanofiltration (OSN) is gradually expanding from academic research to industrial implementation. The need for membranes with low and sharp molecular weight cutoffs that are able to operate under aggressive OSN conditions is increasing. However, the lack of comparable and uniform performance data frustrates the screening and membrane selection for processes. Here, a collaboration is presented between several academic and industrial partners analyzing the separation performance of 10 different membranes using three model process mixtures. Membrane materials range from classic polymeric and thin film composites (TFCs) to hybrid ceramic types. The model solutions were chosen to mimic cases relevant to today's industrial use: relatively low molar mass solutes (330–550 Da) in n-heptane, toluene, and anisole.  相似文献   
82.
The present investigation focuses on the synthesis of crabshell-derived hydroxyapatite (CS-HAP)/ water-soluble synthetic polymer—polyvinylpyrrolidone(PVP)/aloevera(AV)—a natural biopolymer, as a composite for enhanced mechanical, antibacterial and biocompatible properties. The reinforcement of polymer has a significant function in increasing the mechanical property of the composite, whereas the incorporation of AV improves the antibacterial and biocompatibility. Phase composition, morphology, mechanical property, and hydrophilicity of CS-HAP/PVP/AV biocomposite with different concentrations of PVP and AV were examined by Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray (SEM-EDX), Vickers microhardness tests, contact angle, respectively. Furthermore, the antibacterial efficiency of the composite is assessed using Escherichia coli (E coli) and Staphylococcus aureus (S aureus). The biocompatibility of HOS MG 63 cells on the CS-HAP/PVP/AV composite is evaluated by MTT assay test. The obtained results evidence that the as-synthesized composite have appropriate mechanical, antibacterial and biocompatible properties. Overall, the combination of mechanical property of PVP, antibacterial and biocompatible property of AV in CS-HAP/PVP/AV, makes the composite a potential therapeutic material for various biomedical applications.  相似文献   
83.
The FcγRIIA/CD32A is mainly expressed on platelets, myeloid and several endothelial cells. Its affinity is considered insufficient for allowing significant binding of monomeric IgG, while its H131R polymorphism (histidine > arginine at position 131) influences affinity for multimeric IgG2. Platelet FcγRIIA has been reported to contribute to IgG-containing immune-complexe clearance. Given our finding that platelet FcγRIIA actually binds monomeric IgG, we investigated the role of platelets and FcγRIIA in IgG antibody elimination. We used pharmacokinetics analysis of infliximab (IgG1) in individuals with controlled Crohn’s disease. The influence of platelet count and FcγRIIA polymorphism was quantified by multivariate linear modelling. The infliximab half-life increased with R allele number (13.2, 14.4 and 15.6 days for HH, HR and RR patients, respectively). It decreased with increasing platelet count in R carriers: from ≈20 days (RR) and ≈17 days (HR) at 150 × 109/L, respectively, to ≈13 days (both HR and RR) at 350 × 109/L. Moreover, a flow cytometry assay showed that infliximab and monomeric IgG1 bound efficiently to platelet FcγRIIA H and R allotypes, whereas panitumumab and IgG2 bound poorly to the latter. We propose that infliximab (and presumably any IgG1 antibody) elimination is partly due to an unappreciated mechanism dependent on binding to platelet FcγRIIA, which is probably tuned by its affinity for IgG2.  相似文献   
84.
Fatty acids are derived from diet and fermentative processes by the intestinal flora. Two to five carbon chain fatty acids, termed short chain fatty acids (SCFA) are increasingly recognized to play a role in intestinal homeostasis. However, the characteristics of slightly longer 6 to 10 carbon, medium chain fatty acids (MCFA), derived primarily from diet, are less understood. Here, we demonstrated that SCFA and MCFA have divergent immunomodulatory propensities. SCFA down-attenuated host pro-inflammatory IL-1β, IL-6, and TNFα response predominantly through the TLR4 pathway, whereas MCFA augmented inflammation through TLR2. Butyric (C4) and decanoic (C10) acid displayed most potent modulatory effects within the SCFA and MCFA, respectively. Reduction in TRAF3, IRF3 and TRAF6 expression were observed with butyric acid. Decanoic acid induced up-regulation of GPR84 and PPARγ and altered HIF-1α/HIF-2α ratio. These variant immune characteristics of the fatty acids which differ by just several carbon atoms may be attributable to their origins, with SCFA being primarily endogenous and playing a physiological role, and MCFA exogenously from the diet.  相似文献   
85.
Between 20 to 25% of Crohn’s disease (CD) patients suffer from perianal fistulas, a marker of disease severity. Seton drainage combined with anti-TNFα can result in closure of the fistula in 70 to 75% of patients. For the remaining 25% of patients there is room for in situ injection of autologous or allogenic mesenchymal stem cells such as adipose-derived stem/stromal cells (ADSCs). ADSCs exert their effects on tissues and effector cells through paracrine phenomena, including the secretome and extracellular vesicles. They display anti-inflammatory, anti-apoptotic, pro-angiogenic, proliferative, and immunomodulatory properties, and a homing within the damaged tissue. They also have immuno-evasive properties allowing a clinical allogeneic approach. Numerous clinical trials have been conducted that demonstrate a complete cure rate of anoperineal fistulas in CD ranging from 46 to 90% of cases after in situ injection of autologous or allogenic ADSCs. A pivotal phase III-controlled trial using allogenic ADSCs (Alofisel®) demonstrated that prolonged clinical and radiological remission can be obtained in nearly 60% of cases with a good safety profile. Future studies should be conducted for a better knowledge of the local effect of ADSCs as well as for a standardization in terms of the number of injections and associated procedures.  相似文献   
86.
An original drying process combining air impingement and intermittent drying was studied on apple slices and mango cubes. The influence of four operating parameters (air velocity, drying/tempering periods, upper height, and air temperature) on the drying time and on the drying rate was evaluated. Continuous and intermittent drying were compared. The intermittency α = 1/7 (τon = 10 seconds and τoff = 60 seconds) gave the best results. A time savings of 54% for apple and 67% for mango was reached. In continuous drying, a time savings of 4620 seconds was observed by increasing the air velocity from 6 to 40 m s?1 for apple. Air temperatures of 328 K for apple and of 328 K or 338 K for mango were determined as optimum to prevent case‐hardening. Experimental results were fitted with the analytical solution of Fick's second law and the modified Page equation (average values R2 = 0.985 and 0.961, for apple and mango, respectively). For both products, the apparent moisture diffusivity Dapp, the drying constant k, the drying coefficient n, and the activation energy Ea, were identified. Activation energies calculated from the analytical solution were 30.3 and 36.8 kJ mol?1 and were 25.4 and 30.0 kJ mol?1 using the modified Page equation for apple and mango, respectively. Mango has an increased temperature sensitivity and thus will need less energy for drying than apple.  相似文献   
87.
Scope: Products of cashew tree (Anacardium occidentale) are used in traditional medicine for various ailments, including diabetes. Methods and results: The anti‐diabetic properties of cashew plant parts were studied using differentiated C2C12 myoblasts (myotubes) and rat liver mitochondria. Hydroethanolic extract of cashew seed (CSE) and its active component, anacardic acid (AA), stimulated glucose transport into C2C12 myotubes in a concentration‐dependent manner. Extracts of other parts (leaves, bark and apple) of cashew plant were inactive. Significant synergistic effect on glucose uptake with insulin was noticed at 100 μg/mL CSE. CSE and AA caused activation of adenosine monophosphate‐activated protein kinase in C2C12 myotubes after 6 h of incubation. No significant effect was noticed on Akt and insulin receptor phosphorylation. Both CSE and AA exerted significant uncoupling of succinate‐stimulated respiration in rat liver mitochondria. Conclusion: Activation of adenosine monophosphate‐activated protein kinase by CSE and AA likely increases plasma membrane glucose transporters, resulting in elevated glucose uptake. In addition, the dysfunction of mitochondrial oxidative phosphorylation may enhance glycolysis and contribute to increased glucose uptake. These results collectively suggest that CSE may be a potential anti‐diabetic nutraceutical.  相似文献   
88.
A thermomechanical model of pure metal solidification on a moving mold plate is considered. The goal of the model is to obtain a formula for the contact pressure at the shell/mold interface as the mold moves into the molten liquid. From the contact pressure it is possible to infer the effects of the mold velocity and the mold microgeometry on the time and location of gap nucleation which results from irregular distortion of the shell as it grows from the melt. The mold, which moves at a constant velocity into the molten liquid, has a sinusoidal surface with a low aspect ratio: this means that its wavelength greatly exceeds its amplitude. The mold is of infinite area and is assumed to be perfectly conducting and thermomechanically rigid. We therefore neglect the complexities associated with the physics of edge constraints and/or free boundaries of the solidifying shell and the interacting distortions between deformable mold and shell materials along their interface. The ratio of the velocity of the solid/liquid interface to the mold velocity is identified as another dimensionless parameter in the analysis. In order to arrive at an analytical solution for the contact pressure along the shell/mold interface, we assume that this parameter is small. This makes the velocity ratio a convenient perturbation parameter for the analysis of thermomechanical distortion of the thin shell material as it grows from the melt. This necessarily limits the analysis to situations where the mold moves at faster rather than slower speeds. It is assumed that there is zero tangential shear stress between the fluid and the solidifying shell. As the molten liquid flows over the mold, it perfectly wets the surface. This precludes wetting effects due to surface tension. A hypoelastic constitutive law, which is a rate formulation of thermoelasticity, is assumed to govern deformation of the shell as it grows from the molten liquid. Latent heat liberated at the freezing front is extracted across a constant contact resistance at the shell/mold interface. Peculiar fluid motion at the tip is neglected. A solution for the contact pressure that is valid near the liquid surface (i.e., the meniscus) is derived from the main theoretical developments. Beyond the time of gap nucleation at the shell/mold interface, the model is no longer valid since it cannot account for gross distortion of the shell (i.e., distortions that greatly exceed the spatial perturbations considered in the model).  相似文献   
89.
Three approaches commonly used to quantify diffusive gas exchange across aquatic surfaces were compared in a densely treed, low-wind environment Diffusive surface fluxes of carbon dioxide (CO2) and methane (CH4) from a small boreal reservoir were estimated using (i) surface water concentrations, the thin boundary layer (TBL) equation, and gas transfer velocities (k) calculated using sulfur hexafluoride (SF6); (ii) surface water concentrations, the TBL equation, and k estimated from wind speed; and (iii) static floating chambers (FCs). Comparisons were made during three different approximately 10-day intervals (August 2000, June and September 2001). CO2 and CH4 fluxes estimated from SF6-derived k were on average 1-3 times greater than those determined from wind-estimated k Overall agreement between FC CO2 and CH4 flux estimates and those based on SF6 and wind speed derived kvalues was much weaker, with FC CO2 and CH4 flux estimates ranging from -9 to 23 times those based on SF6 and wind-estimated k values. Chamber deployment likely enhanced gas transfer through disturbance of the surface boundary layer, and results of this study suggest that caution must be exercised concerning the use of FCs on very still water surfaces. Furthermore, findings of this study contradict the common belief that use of wind speed to approximate k is inappropriate for small bodies of water characterized by low winds and surface obstructions.  相似文献   
90.
Rheological properties of carrot puree were investigated in the 1–1000 s?1 shear rate range with the objective of modelling the influence of time, temperature and addition of potato flakes on the flow behaviour. Carrot puree exhibited a shear‐thinning behaviour that was well described by the Ostwald‐de Waele (Power Law) model with a flow behaviour index of 0.34 (±0.02) at 20 °C. The time‐dependent behaviour was characterised by a second‐order Structural Kinetic Model. The decay of the structural parameter with time was found to be independent of shear rate. The Arrhenius model was used to explain the effect of temperature in the range from 4 to 60 °C. The dry matter was increased by adding potato flakes (0–5%). A power law model (for the concentration) and the Arrhenius relationship (for the temperature) were combined to simultaneously describe the effects of temperature and concentration. This study provides essential data for equipment and process design.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号