首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   810篇
  免费   30篇
  国内免费   2篇
电工技术   14篇
化学工业   171篇
金属工艺   12篇
机械仪表   31篇
建筑科学   29篇
矿业工程   2篇
能源动力   62篇
轻工业   52篇
水利工程   1篇
无线电   104篇
一般工业技术   168篇
冶金工业   77篇
原子能技术   4篇
自动化技术   115篇
  2024年   5篇
  2023年   16篇
  2022年   21篇
  2021年   27篇
  2020年   28篇
  2019年   20篇
  2018年   31篇
  2017年   29篇
  2016年   31篇
  2015年   18篇
  2014年   18篇
  2013年   56篇
  2012年   29篇
  2011年   48篇
  2010年   26篇
  2009年   29篇
  2008年   32篇
  2007年   34篇
  2006年   25篇
  2005年   22篇
  2004年   22篇
  2003年   9篇
  2002年   17篇
  2001年   13篇
  2000年   6篇
  1999年   8篇
  1998年   34篇
  1997年   30篇
  1996年   14篇
  1995年   12篇
  1994年   11篇
  1993年   6篇
  1992年   10篇
  1991年   7篇
  1990年   5篇
  1989年   8篇
  1988年   8篇
  1987年   4篇
  1986年   6篇
  1984年   7篇
  1982年   3篇
  1981年   6篇
  1979年   3篇
  1978年   3篇
  1977年   8篇
  1976年   6篇
  1975年   6篇
  1974年   5篇
  1973年   4篇
  1971年   3篇
排序方式: 共有842条查询结果,搜索用时 15 毫秒
21.
22.
In this paper, the linear free flexural vibrations of functionally graded material plates with a through center crack is studied using an 8-noded shear flexible element. The material properties are assumed to be temperature dependent and graded in the thickness direction. The effective material properties are estimated using the Mori–Tanaka homogenization scheme. The formulation is developed based on first-order shear deformation theory. The shear correction factors are evaluated employing the energy equivalence principle. The variation of the plates natural frequency is studied considering various parameters such as the crack length, plate aspect ratio, skew angle, temperature, thickness and boundary conditions. The results obtained here reveal that the natural frequency of the plate decreases with increase in temperature gradient, crack length and gradient index.  相似文献   
23.
Cold-formed steel members are increasingly used as primary structural elements in the building industries around the world due to the availability of thin and high strength steels and advanced cold-forming technologies. Cold-formed lipped channel beams (LCB) are commonly used as flexural members such as floor joists and bearers. However, their shear capacities are determined based on conservative design rules. For the shear design of LCB web panels, their elastic shear buckling strength must be determined accurately including the potential post-buckling strength. Currently the elastic shear buckling coefficients of LCB web panels are determined by assuming conservatively that the web panels are simply supported at the junction between their flange and web elements. Hence finite element analyses were conducted to investigate the elastic shear buckling behavior of LCBs. An improved equation for the higher elastic shear buckling coefficient of LCBs was proposed based on finite element analysis results and included in the ultimate shear capacity equations of the North American cold-formed steel codes. Finite element analyses show that relatively short span LCBs without flange restraints are subjected to a new combined shear and flange distortion action due to the unbalanced shear flow. They also show that significant post-buckling strength is available for LCBs subjected to shear. New equations were also proposed in which post-buckling strength of LCBs was included.  相似文献   
24.
We demonstrate a method for incorporating wind velocity measurements from multiple‐point scanning lidars into three‐dimensional wind turbulence time series serving as input to wind turbine load simulations. Simulated lidar scanning patterns are implemented by imposing constraints on randomly generated Gaussian turbulence fields in compliance with the Mann model for neutral stability. The expected efficiency of various scanning patterns is estimated by means of the explained variance associated with the constrained field. A numerical study is made using the hawc2 aeroelastic software, whereby the constrained turbulence wind time series serves as input to load simulations on a 10 MW wind turbine model using scanning patterns simulating different lidar technologies—pulsed lidar with one or multiple beams—and continuous‐wave lidars scanning in three different revolving patterns. Based on the results of this study, we assess the influence of the proposed method on the statistical uncertainty in wind turbine extreme and fatigue loads. The main conclusion is that introducing lidar measurements as turbulence constraints in load simulations may bring significant reduction in load and energy production uncertainty, not accounting for any additional uncertainty from real measurements. The constrained turbulence method is most efficient for prediction of energy production and loads governed by the turbulence intensity and the thrust force, while for other load components such as tower base side‐to‐side moment, the achieved reduction in uncertainty is minimal. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
25.
The dynamic loads on the rollers inside the bearings of large wind turbine gearboxes operating under transient conditions are presented with a focus on identifying conditions leading to slippage of rollers. The methodology was developed using a multi‐body model of the drivetrain coupled with aeroelastic simulations of the wind turbine system. A 5 MW reference wind turbine is considered for which a three‐stage planetary gearbox is designed on the basis of upscaling of an actual 750 kW gearbox unit. Multi‐body dynamic simulations are run using the ADAMS software using a detailed model of the gearbox planetary bearings to investigate transient loads inside the planet bearing. It was found that assembly and pre‐loading conditions have significant influence on the bearing's operation. Also, the load distribution in the gearbox bearings strongly depends on wind turbine operation. Wind turbine start‐up and shut‐down under normal conditions are shown to induce roller slippage, as characterized by loss of contacts and impacts between rollers and raceways. The roller impacts occur under reduced initial pre‐load on opposite sides of the load zone followed by stress variation, which can be one of the potential reasons leading to wear and premature bearing failures. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
26.
Ruthenium oxide catalysts were prepared by a sol–gel technique and calcined at different temperatures e.g., 400 °C, 500 °C and 600 °C. The catalysts performance for the oxygen evolution reaction was studied using cyclic voltammetry and their performance in a high temperature proton exchange membrane water electrolyser (PEMWE) examined. Physio-chemical characterization was carried out to study the thermal stability, oxygen-metal bond formation, crystallinity phase and crystallite size, particle size and elemental analysis by TGA, FTIR, XRD, TEM and EDX respectively. The electrolyte used for electrochemical characterisation was 1.0 M H3PO4 and 0.5 M H2SO4. Additionally, the effect of calcination and electrolyte temperature on oxygen evolution reaction of RuO2 catalysts was studied and the apparent activation energy was determined using chronoamperometry. The prepared RuO2 were tested as anode catalyst in PEMWE in the temperature range of 120–150 °C using phosphoric acid doped polybenzimidazole membrane electrolyte. The physio-chemical and electrochemical characterization results indicate that RuO2 calcined at 500 °C gave the best performance with a current density of 0.875 A cm−2 at 1.8 V in a PEMWE operated at 150 °C.  相似文献   
27.
A novel carbon nanostructure grown by catalytic chemical vapour deposition technique has been applied as an electrocatalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. The growth of carbon nanostructure (CNS) is carried over a low cost bi-metal oxide catalyst (Fe–Sn–O) synthesized by sol–gel technique. Platinum nanoparticle decoration on Fe–Sn–O incorporated CNS (CNS-FSO) is performed by ethylene glycol reduction method. The structural as well as morphological analysis confirms the formation of CNS-FSO and platinum decoration on CNS-FSO. The electrochemically active surface area (ECSA) of platinum decorated CNS-FSO (Pt/CNS-FSO) is 68 m2 g−1, as revealed from cyclic voltammetry. Polarization studies are carried out at different temperatures (40 °C, 50 °C and 60 °C) to exploit the oxygen reduction reaction activity of Pt/CNS-FSO. A maximum power density of 449 mW cm−2 (without back pressure) at 60 °C shows the potential of this novel CNS-FSO as an electrocatalyst support in proton exchange membrane fuel cell.  相似文献   
28.
5-Aminosalicylic acid (5-ASA) is an aminosalicylate anti-inflammatory drug, which is also known as mesalazine or mesalamine. Currently employed in treating inflammatory bowel disease, ulcerative colitis, inflamed anus or rectum, and maintain remission in Crohn's disease. Evidence from the researchers highlighted its significant re-epithelization in allergic asthma, aphthous, and gastric ulcerative conditions. The objective of the study was to formulate the pluronic lecithin organogel (PLO) containing 5-ASA and evaluate its wound-healing ability in a full thickness excision wound rat model. The data obtained from in silico docking studies revealed 5-ASA is having an affinity towards the transforming growth factor-beta (TGF-β) specifically towards beta1. Among various formulations prepared (F1 to F8), F1, and F6 have shown a maximum in vitro drug release with optimum pH and viscosity. From MTT assay it was found that selected PLO formulations showed no toxicity and enhanced cell proliferation in HaCaT cell lines. In vivo wound-healing studies in albino Wistar rats has revealed that PLO accelerates wound closure and reepithelization to the statistically significant level on day 3 (p?相似文献   
29.
Many human acid tolerant bacterial and fungal pathogens can be transmitted through the consumption of the contaminated fruit juices. We aim to formulate essential oil nanoemulsions (basil, black seed, turmeric, clove & cinnamon), determine their ability to clear contamination by food borne bacterial pathogens from fruit juices. The antibacterial activity of the optimised formulations was tested in the fruit juices against bacterial pathogens causing gastrointestinal tract infections. The minimum bactericidal concentration (MBC) of clove emulsions ranged from 15.6 to 25 μL mL−1. Cinnamon oil emulsion had an MBC ranging between 15 and 31 μL mL−1. At MBC, cinnamon oil emulsions caused a 6log10 decrease in viable counts by 8 h and maintained the sterility of fruit juices for 7 days at ambient temperature. Thus, clove and cinnamon microemulsions can be used as juice additives to control food borne bacterial pathogens and maintain the bacterial sterility of fruit juices.  相似文献   
30.
Recently, Packet scheduling plays a vital role in Wireless Sensor Networks (WSNs). The major key challenges include delay, packet dropping, energy consumption and lifetime due to constraints in energy and computing resources. All the research works on packet scheduling scheme in WSN uses only First Come First Served (FCFS) and Dynamic Multilevel Priority (DMP) schemes. FCFS works based on packet arrival time, it leads to starvation and high processing overhead for real-time packets. DMP works in multilevel with dynamic priority reduces the transmission overhead and bandwidth; it consumes more resources for real-time task leads to deadlock. To solve these problems, this work presents Multilevel Dynamic Feedback Scheduling (MDFS) algorithm. The sensor node classifies the emergency and normal data into three different ready queues named as high, medium and low priority, respectively. The queues are connected with a feedback mechanism; each packet from the sensor node has its own time quantum value based on the deadline. The updated time quantum value is compared with the boundary value of the queues, depends on the updated value the data packets are moved between queues with help of feedback mechanism. The simulation result proves that the projected MDFS outperforms in WSN environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号