首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106575篇
  免费   2794篇
  国内免费   445篇
电工技术   948篇
综合类   2433篇
化学工业   17462篇
金属工艺   5247篇
机械仪表   3439篇
建筑科学   3000篇
矿业工程   634篇
能源动力   1897篇
轻工业   8952篇
水利工程   1453篇
石油天然气   524篇
武器工业   1篇
无线电   10252篇
一般工业技术   19846篇
冶金工业   4775篇
原子能技术   383篇
自动化技术   28568篇
  2024年   44篇
  2023年   206篇
  2022年   477篇
  2021年   1054篇
  2020年   663篇
  2019年   756篇
  2018年   15182篇
  2017年   14120篇
  2016年   10797篇
  2015年   1361篇
  2014年   1333篇
  2013年   2214篇
  2012年   4761篇
  2011年   11080篇
  2010年   9573篇
  2009年   6770篇
  2008年   7879篇
  2007年   8733篇
  2006年   971篇
  2005年   1866篇
  2004年   1700篇
  2003年   1754篇
  2002年   1031篇
  2001年   479篇
  2000年   492篇
  1999年   370篇
  1998年   865篇
  1997年   563篇
  1996年   427篇
  1995年   290篇
  1994年   231篇
  1993年   172篇
  1992年   101篇
  1991年   95篇
  1990年   61篇
  1989年   65篇
  1988年   80篇
  1987年   56篇
  1985年   61篇
  1984年   55篇
  1983年   51篇
  1982年   40篇
  1980年   45篇
  1976年   58篇
  1968年   48篇
  1966年   43篇
  1965年   46篇
  1958年   39篇
  1955年   63篇
  1954年   68篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Electroosmotic flow (EOF) is a promising way for driving and mixing fluids in microfluidics. For the parallel-plate microchannel with the hydrophobic surface, this paper solved the governing equations using the finite element method (FEM), and the effects of microchannel height, electric strength and ionic concentration on EOF were thus investigated. The simulation indicates that the transient characteristics of EOF are similar in hydrophobic and hydrophilic microchannels, the steady time of EOF is proportional to the square of microchannel height, and the scale is microsecond. EOF velocity is proportional to the electric strength and independent of the channel height, and decreases slowly with the ionic concentration, which is lower than that in hydrophilic microchannel due to the presence of slip length in hydrophobic microchannel. The results can provide valuable insights into the optimal design of microchannel surfaces to achieve accurate EOF control in hydrophobic microchannel. Supported by the National Natural Science Foundation of China (Grant No. 50730007)  相似文献   
992.
Copolymers of 9,9-dioctylfluorene (DOF) and 2-thienyl-benzothiadiazole (DBT) were synthesized by Suzuki reaction and end-capped by N-hexyl-carbazole and benzene, which were abbreviated as PDOF-DBT-Cz and PDOF-DBT-B, respectively. The photophysical, electrochemical and thermal properties of the copolymers were studied. The results indicated that replacement of N-hexyl-carbazole as end-capping group of PDOF-DBT can vary light color and improve luminescence efficiency. Supported by the Major Project of Science Foundation Ministry of Education of China (Grant No. 207015) and the National Natural Science Foundation of China (Grant No. 20671068)  相似文献   
993.
A new type of ultra-lightweight metallic lattice structure (named as the X-type structure) is reported. This periodic structure was formed by two groups of staggered struts in the traditional pyramid structure, and fabricated by folding expanded metal sheet along rows of offset nodes and then brazing the folded structure (as the core) with top and bottom facesheets to form sandwich panels. The out-of-plane compressive and shear properties of the X-type lattice sandwich structure were investigated experimentally and compared to those of the sandwich having a pyramidal truss core. It is found that the formation of the 2-dimensional staggered nodes can effectively make the X-type structure more resistant to inelastic and plastic buckling under both compression and shear loading than the pyramidal lattice truss. Obtained results show that the compressive and shear peak strengths of the X-type lattice structure are about 30% higher than those of the pyramidal lattice truss having the same relative density. Supported by the National Basic Research Program of China (“973” Project) (Grant No. 2006CB601202), the National Natural Science Foundation of China (Grant Nos. 10632060,10825210), the National “111” Project of China (Grant No. B06024) and the National High-Tech Research and Development Program of China (“863” Project) (Grant No. 2006AA03Z519)  相似文献   
994.
Hydrogen atom adsorption and diffusion properties on clean and vacancy defective Mg (0001) surface have been investigated systematically by using a first-principles calculations method based on the density functional theory. The calculation results of adsorption energy and diffusion energy barrier show that hydrogen atom is apt to be adsorbed at fcc and hcp sites on clean Mg (0001) surface, and fcc adsorption site is found to be more preferred. The highest diffusion energy barrier is estimated as 0.6784 eV for the diffusion of hydrogen from clean Mg (0001) surface into its bulk. Surface effects, which affect hydrogen diffusion obviously, results in a slow diffusion velocity of hydrogen from surface to subsurface, while a fast one from subsurface to bulk, indicating the range of surface effects is only restricted within two topmost layers of Mg (0001) surface. Comparatively, Mg atom vacancy on Mg (0001) surface not only enhances the chemisorption interaction between H and Mg surface, but also benefits H atom diffusion in Mg bulk with relatively more diffusion paths compared with that of clean surface. Besides, hydrogen atom is found to occupy mostly the tetrahedral interstice when it diffuses into the Mg bulk. Further analysis of the density of states (DOS) shows that the system for hydrogen atom to be adsorbed at fcc site has a lower DOS value (N (E F)) at Fermi level and more bonding electrons at the energy range blow the Fermi level of H/Mg (0001) system as compared with that at hcp site. On the other hand, the enhanced chemisorption interaction between hydrogen and defective surface should be attributed to the fact that the electronic structures of Mg (0001) surface are modified by an Mg vacancy, and the bonding electrons of the topmost layer Mg atoms are transferred from low energy range to Fermi level, which is in favor of improving the surface activity of Mg (0001) surface. Supported by the PhD Programs Foundation of Ministry of Education of China (Grant No. 200805321032), the Science and Technology Program Project of Hunan Province (Grant No. 2008GK3083) and the Program for Changjiang Scholars and the Innovative Research Team in university (Grant No. 531105050037)  相似文献   
995.
The structural and optical properties of amorphous semiconductor mercury cadmium telluride (a-MCT) are obtained by the first principles calculations. The total pair distribution functions and the density of states show that the a-MCT has the semiconductor characteristic. The calculated results of dielectric function show that E 2 peak of the imaginary of dielectric function for the crystal mercury cadmium telluride abruptly disappears in the amorphous case due to the long-range disorders. And the imaginary of dielectric function of a-MCT shows a large broad peak, which is in agreement with the available results of other amorphous semiconductors. From the linear extrapolation of the curve ħωɛ 2(ω)1/2 versus ħω, it can be obtained that the optical energy gap of amorphous semiconductor Hg0.5Cd0.5Te is 0.51±0.05 eV. Supported by the National Basic Research Program of China (“973” Project) (Grant No. 2007CB613205), the National Natural Science Foundation of China (Grant Nos.10725418, 10734090, 60576068), the Key Fund of Shanghai Science and Technology Foundation (Grant No. 08JC1421100) and the Knowledge Innovation Program of the Chinese Academy of Sciences  相似文献   
996.
The nonequilibrium molecular dynamics (MD) method was used to model the nanocolloids and the solvent particles. By introducing a non-uniform electric field, colloids were polarized to have opposite polarities. Separation of colloids driven by dielectrophoresis (DEP) could be seen clearly under a strong electric field at low temperatures. Analyzing the ratio of DEP velocities of colloids to thermal velocities of neutral solvent particles showed that when the ratio was correspondingly big, collision between colloids and solvent particles would be intense, making the DEP velocity of colloids fluctuate frequently. By changing the electric field strength, it was found that the enhancement of electric field strength would quicken the separation of colloids. But when the electric field strength increased to a certain degree, the separation motion would be slow because of the strong friction resistance of the solvent particles to the colloids. Moreover, studying the separation reason of colloids based on the potential energy showed that after colloids were polarized, the attractive potential energy among the colloids would be weaker than before, while the increase of temperature would reduce the attractive potential energy and increase the repulsive potential energy, which accorded with the DLVO theory. Supported by the National Hi-Tech Research and Derelopment Program of China (“863” Project) (Grant No. 2006AA04Z351) and the National Natural Science Foundation of China (Grant Nos. 50675033, 30770553)  相似文献   
997.
The effect of coagulation temperature on the morphology, microstructures and mechanical properties of dihydroxy poly(p-phenylene benzobisoxazole) (DHPBO) fibers was investigated during dry-jet wet-spinning process, in which the coagulation bath concentration and drawn ratio were kept as 10 wt% of PPA in water and 1.7, respectively. The structures and mechanical properties of the as-spun DHPBO fibers were characterized by FTIR, XRD, SEM, and single fiber tensile testing. The results indicated that in PPA/H2O coagulation system, when the coagulation temperature was 25°C, highly crystallized DHPBO as-spun fibers possessing fine crystallites, circular and smooth morphology, and excellent mechanical properties could be achieved. Supported by the National Natural Science Foundation of China (Grant No. 50673017), Shanghai Leading Academic Discipline Project (Grant No. B603) and the Program of Introducing Taleuts of Discipline to University of People’s Republic of China (“111” Program) (Grant No. 111-2-04)  相似文献   
998.
The traditional unified viscoplasticity constitutive model can be only applied to metal materials. The study of the unified constitutive theory for metal materials has discovered the correlation between the classical plasticity theory and the unified viscoplasticity constitutive model, thus leading to the concepts of the classic plastic potential and yield surface in the unified constitutive model. Moreover, this research has given the continuous expression of the classical plastic multiplier and presented the corresponding constructive method, which extends its physical significance and lays down a good foundation for the application of the unified constitutive theory to the material analysis in more fields. This paper also introduces the unified constitutive model for metal materials and geo-materials. The numerical simulation indicates that the construction should be both reasonable and practical. Supported by the National Natural Science Foundation of China (Grant No. 90410012)  相似文献   
999.
A neural network model with high nonlinear recognition capability was constructed to describe the relationship between the deformation impact factors and the deformation results of vascular stent.Then,using the weighted correction method with the attached momentum term,the network training algorithm was optimized by introducing learning factor η and momentum factor ψ,so the speed of the network training and the system robustness were enhanced.The network was trained by some practi-cal cases,and the statisti...  相似文献   
1000.
A new type counter electrode for dye-sensitized solar cells (DSCs) was proposed which consists of substrate, aluminum film and platinum film. The new type counter electrode can obviously improve the photoelectric conversion efficiency of DSCs from 3.46% to 7.07% under the standard AM1.5 irradiation condition. Advantages and shortcomings of this new type counter electrode in terms of electrical properties, optical properties and anti-corrosive properties were analyzed. As a result, some improvements were proposed. Supported by the Key Foundation for Fundamental Research of Tianjin Municipal Science & Technology Commission in China ( Grant No. 06YFJZJC01700) and the National Basic Research Program of China (“973“ Project) (Grant Nos. 2006CB20260, 2006CB202603)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号