Wireless Sensor Network (WSN) is generally considered as a standout amongst the most critical advancements for the twenty-first century, it normally comprises multifunctional wireless sensor nodes, with detecting, communications, and calculation capacities. Clustering the random nodes in WSN is a challenging task with high performance. This paper presents the new clustering model to monitor the eco-friendly mobile network by clustering the sensor nodes and to enhance the Quality of Service of that optimal network in WSN. The proposed Multi-Objective Weighted Clustering model groups the arbitrary nodes and afterward the optimal network is achieved by the optimization of network parameters. For optimizing the network parameters, a metaheuristic algorithm i.e. Improved Fruit Fly Optimization is introduced. With the goal of assessing the Coverage Efficiency (CE) and network user satisfaction of the accomplished optimal mobile network in WSN, the remote sensor monitoring process is applied. Sensor monitoring helps to know the network users and furthermore to improve the CE of WSN, contrasted with existing work.
Machinery prognosis is the forecast of the remaining operational life, future condition, or probability of reliable operation of an equipment based on the acquired condition monitoring data. This approach to modern maintenance practice promises to reduce downtime, spares inventory, maintenance costs, and safety hazards. Given the significance of prognostics capabilities and the maturity of condition monitoring technology, there have been an increasing number of publications on rotating machinery prognostics in the past few years. These publications covered a wide spectrum of prognostics techniques. This review article first synthesises and places these individual pieces of information in context, while identifying their merits and weaknesses. It then discusses the identified challenges, and in doing so, alerts researchers to opportunities for conducting advanced research in the field. Current methods for predicting rotating machinery failures are summarised and classified as conventional reliability models, condition-based prognostics models and models integrating reliability and prognostics. Areas in need of development or improvement include the integration of condition monitoring and reliability, utilisation of incomplete trending data, consideration of effects from maintenance actions and variable operating conditions, derivation of the non-linear relationship between measured data and actual asset health, consideration of failure interactions, practicability of requirements and assumptions, as well as development of performance evaluation frameworks. 相似文献
Abstract. Consider an AR(1) process given by X t=γ+ø X t+ Z t≥ 1. where 0 ≤γ, 0 ≤ø 1 are unknown parameters and the innovations Z t, ≥ 1, are independently and identically distributed positive random variables. We propose estimates of (γø) which are obtained as the solution to a linear programming problem and establish their strong consistency. When the Z ts have the exponential distribution. our estimate becomes the conditional maximum likelihood estimate given X 0. Under the assumption of regular variation of the innovation distribution at its left and right endpoints (assumed to be 0 and ∝ respectively), we establish asymptotic limit laws for the estimates. Consistent estimators for a class of moving-average processes with heavy-tailed innovation distribution are also presented. 相似文献
The thermal conductivity and thermal diffusivity of sisal-reinforced polyethylene (SRP), glass-reinforced polyethylene (GRP) and sisal/glass hybrid fibre-reinforced polyethylene (GSRP) has been evaluated at cryogenic to high temperature (120–350 K). It has been observed that the variation of thermal conductivity with temperature is almost the same for LDPE and SRP containing perpendicularly oriented sisal fibres. The difference between the values of thermal conductivity shown by LDPE and GRP is greater than that of SRP and LDPE. The enhanced thermal conductivity of glass fibre is due to the presence of Fe2+ ions in the glass fibres. The linear variation in thermal conductivity with fibre loading is explained with the help of a model suggested by Agari. The difference between the thermal conductivity properties in directions parallel and perpendicular to the applied flux is a maximum for SRP owing to the anisotropic nature of sisal fibre. The difference is marginal for GRP on account of its isotropic nature. The position of GSRP is found to be intermediate. It can been observed that the variation of thermal diffusivity with temperature is just opposite to that of thermal conductivity. This may be due to a reduction in the mean free path of phonons. An empirical equation is derived to explain the variation in thermal conductivity and thermal diffusivity with temperature. 相似文献
Hydroisomerization of n-hexadecane is performed over ZSM-12 framework having tailored Brønsted acidity to investigate the effect in terms of product selectivity and yield. For this purpose, pure phase of ZSM-12 (bulk molar ratio Si/Al ~ 60) has been synthesized using TEABr as a structure directing agent. The framework Brønsted acidity is tailored with group II elements (M) viz. Ca, Ba and Mg, by means of ion-exchange method. The samples so prepared have been characterized for phase purity, textural parameters, morphology by employing powder X-ray diffraction, nitrogen adsorption–desorption isotherm measurement at 77 K, and scanning electron microscopy technique, respectively. Similarly, % metal exchange is estimated using inductively coupled plasma technique. The quantification of Brønsted acidity for H+–M++–ZSM-12 samples has been estimated by means of ammonia temperature programmed desorption (NH3-TPD) and Fourier transform infrared spectroscopy of ammonia (NH3-FTIR). The well characterized H+–M++–ZSM-12 samples were loaded with Platinum (Pt, 0.5 wt%) and subjected to hydroisomerization of n-hexadecane using an up-flow fixed bed reactor to verify the effect of process parameters like temperature and WHSV. Pt/H+–Ba2+–ZSM-12 with tailored Brønsted acidity in the range of about 25 % demonstrated the optimum performance among all the catalysts with an increased isomer selectivity and yield (89.2 and 80.3 %, respectively) by about 4 wt% at a conversion level of about 90 % compared to Pt/H+–ZSM-12 framework at 568 K. Such enhancement in isomer selectivity and yield is found to be significant from commercial application point of view. Based on the obtained trend, the potential benefits of implementation of Pt/H+–Ba2+–ZSM-12 (bulk molar ratio Si/Al ~ 60) framework for cold flow property improvement of ‘bio-ATF’ have been envisaged. 相似文献
A novel series of sulfur-containing dihydrochromeno[8,7-e][1,3]oxazine-2(8H)-thiones has been synthesized through an eco-friendly Mannich-type condensation cyclization reaction of 7-hydroxy-4-methyl-2-thiocoumarin or 6-chloro-7-hydroxy-4-methyl-2-thiocoumarin with formaldehyde and primary amines in water at 80–90°C for 2 h. All the synthesized compounds were screened for their in vitro anti-bacterial efficacy against two Gram-positive and three Gram-negative bacterial strains by using the disc diffusion method. The compound (8c) was found to be most potent with the zone of inhibition of 16 and 15 mm against Staphylococcus aureus ATCC 2937 and Klebsiella pneumoniae ATCC 31488, respectively. 相似文献
A series of (2E)‐1‐(5‐bromothiophen‐2‐yl)‐3‐(para‐substituted phenyl)prop‐2‐en‐1‐ones ( TB1 – TB11 ) was synthesized and tested for inhibitory activity toward human monoamine oxidase (hMAO). All compounds were found to be competitive, selective, and reversible toward hMAO‐B except (2E)‐1‐(5‐bromothiophen‐2‐yl)‐3‐(4‐nitrophenyl)prop‐2‐en‐1‐one ( TB7 ) and (2E)‐1‐(5‐bromothiophen‐2‐yl)‐3‐(4‐chlorophenyl)prop‐2‐en‐1‐one ( TB8 ), which were selective inhibitors of hMAO‐A. The most potent compound, (2E)‐1‐(5‐bromothiophen‐2‐yl)‐3‐[4‐(dimethylamino)phenyl]prop‐2‐en‐1‐one ( TB5 ), showed the best inhibitory activity and higher selectivity toward hMAO‐B, with Ki and SI values of 0.11±0.01 μm and 13.18, respectively. PAMPA assays for all compounds were carried out in order to evaluate the capacity of the compounds to cross the blood–brain barrier. Moreover, the most potent MAO‐B inhibitor, TB5 , was found to be nontoxic at 5 and 25 μm , with 95.75 and 84.59 % viability among cells, respectively. Molecular docking simulations were carried out to understand the crucial interactions responsible for selectivity and potency. 相似文献
International Journal on Document Analysis and Recognition (IJDAR) - This work addresses the problem of Question Answering (QA) on handwritten document collections. Unlike typical QA and Visual... 相似文献
The Journal of Supercomputing - This study offers a neural network-based deep learning method for energy optimization modeling in electric vehicles (EV). The pre-processed driving cycle is... 相似文献