首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241篇
  免费   14篇
电工技术   2篇
化学工业   67篇
金属工艺   4篇
机械仪表   1篇
建筑科学   12篇
矿业工程   1篇
能源动力   16篇
轻工业   30篇
水利工程   1篇
石油天然气   1篇
无线电   13篇
一般工业技术   67篇
冶金工业   11篇
自动化技术   29篇
  2024年   3篇
  2023年   3篇
  2022年   7篇
  2021年   6篇
  2020年   4篇
  2019年   5篇
  2018年   8篇
  2017年   9篇
  2016年   11篇
  2015年   5篇
  2014年   3篇
  2013年   18篇
  2012年   16篇
  2011年   23篇
  2010年   16篇
  2009年   18篇
  2008年   24篇
  2007年   13篇
  2006年   16篇
  2005年   7篇
  2004年   6篇
  2003年   8篇
  2002年   5篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
排序方式: 共有255条查询结果,搜索用时 15 毫秒
91.
The bulk structure was investigated for Fe-based perovskite-type oxides with the formula La0.6Sr0.4CoyFe1−yO3−δ (y = 0.1, 0.2, and 0.3). The materials were confirmed to be stoichiometric with respect to oxygen under ambient conditions and the structural features were then further characterized under different environments as a function of temperature. Under reducing atmospheres, the degree of reduction increased with Co content, suggesting the presence of preferential oxidation of Fe over Co. Under milder conditions, oxygen vacancy formation was not proportional to Co content, which was likely caused by an electronic structure transition. The unit cell parameters were also shown to strongly depend upon Co content, temperature, and environment. A rhombohedral to cubic transition occurred at lower temperatures for higher Co content, but showed less dependence upon environment. A change in the thermal expansion behavior occurred at the temperature where oxygen vacancies formed leading to two regions of linear thermal expansion. The use of lattice parameters compared to dilatometry allowed for the simultaneous monitoring of unit cell symmetry and expansion behavior so the link between thermal properties and unit cell symmetry could be firmly established.  相似文献   
92.
The heuristic method is one of the methods used for the scheduling of resource-constrained projects. This method is commonly used in programming the projects with high number of activities and resources such as construction investments. This paper investigates the effectiveness of three heuristic method priority rules applied in the resource scheduling of ten Turkish housing estate projects which were scheduled according to three preselected priority rules [maximum remaining path length (MRPL), latest finish time (LFT), and minimum slack time (MNSLCK)] in resource-constrained conditions. The performance of each priority rule was evaluated in relation to the duration of the project. The results revealed that MRPL priority reduced the project duration to minimum in six projects, whereas LFT priority yielded the best duration results in three projects and MNSLCK priority in only one project.  相似文献   
93.
The detection of chemical agents is important in many areas including environmental pollutants, toxins, biological and chemical pollutants. As "smart" cells, with strong information encoding ability, neurons can be treated as independent sensing elements. A hybrid circuit of a semiconductor chip with dissociated neurons formed both sensors and transducers. Stochastic frequency spectrum was used to differentiate a mixture of chemical agents with effect on the opening of different ion channels. The frequency of spike trains revealed the concentration of the chemical agent, where the characteristic tuning curve revealed the identity. "Fatigue" experiment was performed to explore the "refreshing" ability and "memory" effect of neurons by cyclic and cascaded sensing. "Neuronelectronic noses" such as this should have wide potential applications, most notably in environmental and medical monitoring.  相似文献   
94.
Sorption of acid red 57 from aqueous solution onto sepiolite   总被引:6,自引:0,他引:6  
Sepiolite, a highly porous mineral, is becoming widely used as an alternative material in areas where sorptive, catalytic and rheological applications are required. High ion exchange capacity and high surface area and more importantly its relatively cheap price make it an attractive adsorbent. In this study, the adsorption of acid red 57 by natural mesoporous sepiolite has been examined in order to measure the ability of this mineral to remove coloured textile dyes from wastewater. For this purpose, a series of batch adsorption tests of acid red 57 from aqueous sepiolite solutions have been systematically investigated as a function of parameters such as pH, ionic strength and temperature. Adsorption equilibrium was reached within 1h. The removal of acid red 57 decreases with pH from 3 to 9 and temperature from 25 to 55 degrees C, whereas it increases with ionic strength from 0 to 0.5 mol L(-1). Adsorption isotherms of acid red on sepiolite were determined and correlated with common isotherm equations such as Langmuir and Freundlich models. It was found that the Langmuir model appears to fit the isotherm data better than the Freundlich model. The physical properties of this adsorbent were consistent with the parameters obtained from the isotherm equations. Approximately, 21.49% weight loss was observed. The surface area value of sepiolite was 342 m2 g(-1) at 105 degrees C, and it increased to 357 m2 g(-1) at 200 degrees C. Further increase in temperature caused channel plugging and crystal structure deformation, as a result the surface area values showed a decrease with temperature. The data obtained from adsorption isotherms at different temperatures have been used to calculate some thermodynamic quantities such as the Gibbs energy, heat and entropy of adsorption. The thermodynamic data indicate that acid red 57 adsorption onto sepiolite is characterized by physical adsorption. The dimensionless separation factor (RL) have shown that sepiolite can be used for removal of acid red 57 from aqueous solutions. The sorption capacity of the sepiolite is comparable to the other available adsorbents, and it is quite cheaper.  相似文献   
95.
96.
Breast swelling is caused by many etiological factors, but should alert central vein occlusion in hemodialysis patients when the permanent vascular access is in the same arm. The swelling of the breast is caused by venous hypertension in the venous plexus draining the breast. Endovascular treatment relieves venous hypertension and related clinical signs. Additional diagnostic workup or invasive interventions such as a biopsy should be avoided in such patients, as diagnosis is straightforward with the presence of a functioning arteriovenous fistula in the same arm.  相似文献   
97.
Accelerated electrochemical corrosion of nitrogen-containing carbon (CN x ) oxygen reduction catalysts was performed by a chronoamperometric hold at 1.2 V versus NHE in acidic electrolyte using a rotating disk electrode system. Cyclic voltammograms were used to measure the electrochemically active quinone/hydroquinone redox reaction couple indicating the degree of carbon corrosion. Half-cell testing of CN x oxygen reduction catalyst materials showed superior carbon corrosion resistance compared to Vulcan carbon, the most ubiquitous cathode catalyst support. When oxygen reduction activity was measured before and after carbon corrosion, carbon corrosion resilience trended with the oxygen reduction activity. CN x catalysts subjected to carbon corrosion testing did not show a change in the onset of oxygen reduction reaction (ORR) activity potentials with only a slight reduction in current density, but showed improved ORR selectivity to the complete reduction of dioxygen to water.  相似文献   
98.
The interfacial shear strength (IFSS) and fracture energy of individual carbon nanofibers embedded in epoxy were obtained for different surface conditions and treatments by novel, MEMS-based, nanoscale fiber pull-out experiments. As-grown vapor grown carbon nanofibers (VGCNFs) with turbostratic surface and 5 nm peak-to-valley surface roughness exhibited high IFSS and interfacial fracture energy, averaging 106 ± 29 MPa and 1.9 ± 0.9 J/m2, respectively. Subsequent high temperature heat treatment and graphitization resulted in drastically reduced IFSS of 66 ± 10 MPa and interfacial fracture energy of 0.65 ± 0.14 J/m2. The smaller IFSS values and the reduced standard deviation were due to significant reduction of the fiber surface roughness to 1–2 nm, as well as a decrease in surface defect density during conversion of turbostratic and amorphous carbon to highly ordered graphitic carbon. For both grades of VGCNFs failure was adhesive with clear nanofiber surfaces after debonding. Oxidative functionalization of high temperature heat-treated VGCNFs resulted in much higher IFSS of 189 ± 15 MPa and interfacial fracture energy of 3.3 ± 1.0 J/m2. The debond surfaces of functionalized nanofibers had signs of matrix residue and/or shearing of the outer graphitic layer of the VGCNFs, namely the failure mode was a combination of cohesive matrix and/or cohesive fiber failure which contributed to the high IFSS. For all three grades of VGCNFs the IFSS was independent of fiber length and diameter. The findings of this experimental study emphasized the critical role of nanofiber surface morphology and chemistry in determining the shear strength and fracture energy of nanofiber interfaces, and shed light to prior composite-level strength and fracture toughness measurements.  相似文献   
99.
Magnetic Resonance Materials in Physics, Biology and Medicine - This research utilizes magnetic resonance angiography (MRA) to identify arterial locations during the parametric evaluation of...  相似文献   
100.
Diamond, the best thermal conductor known, is the ultimate choice as a substrate material for the fabrication of denser, smaller and faster electronic packages. Consequently, in recent years, worldwide efforts have focused on the design of manufacturing transparent technologies for post-synthesis processing (polishing, planarization, metallization, die attach,, etc.) of diamond substrates In this study, a manufacturing-transparent, cost-effective, non-vacuum, laser-assisted coarse polishing technique for thick free-standing CVD diamond substrates was investigated [2]. The thickness of the substrates varied from 700 to 1000 μm, with the average grain size ranging from 150 to 200 μm. The average surface roughness (Ra) of the substrates, measured using contact surface profilometry, was between 20 and 30 μm. The substrates were initially irradiated with a Nd-YAG laser (λ = 532 nm) for coarse material removal, followed by an ArF excimer laser (λ = 193 nm) for finer surface finishing. Under optimized conditions, the average surface roughness (Rrma) was reduced from 25 to 5 μm with the Nd-YAG laser, and further to less than or equal to 1 μm with the excimer laser. The technique, which is the fastest processing technique known to the authors, is capable of polishing a 1 cm × 1 cm × 0.07 cm substrate in 50 s.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号