首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179篇
  免费   2篇
电工技术   13篇
化学工业   14篇
机械仪表   3篇
建筑科学   4篇
能源动力   2篇
轻工业   14篇
无线电   78篇
一般工业技术   19篇
冶金工业   15篇
自动化技术   19篇
  2020年   5篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   6篇
  2012年   7篇
  2011年   6篇
  2010年   8篇
  2009年   7篇
  2008年   8篇
  2007年   13篇
  2006年   13篇
  2005年   14篇
  2004年   9篇
  2003年   10篇
  2002年   5篇
  2001年   4篇
  2000年   3篇
  1999年   4篇
  1998年   7篇
  1997年   6篇
  1996年   6篇
  1995年   5篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1986年   1篇
  1982年   1篇
  1976年   6篇
  1975年   1篇
  1969年   2篇
  1968年   1篇
  1967年   1篇
  1966年   3篇
  1965年   1篇
  1963年   1篇
排序方式: 共有181条查询结果,搜索用时 31 毫秒
11.
In order to enhance the applications of SCR devices for deep-submicron CMOS technology, a novel SCR design with "initial-on" function is proposed to achieve the lowest trigger voltage and the highest turn-on efficiency of SCR device for effective on-chip ESD protection. Without using the special native device (NMOS with almost zero or even negative threshold voltage) or any process modification, this initial-on SCR design is implemented by PMOS-triggered SCR device, which can be realized in general CMOS processes. This initial-on SCR design has a high enough holding voltage to avoid latchup issues in a VDD operation voltage of 2.5 V. The new proposed initial-on ESD protection design with PMOS-triggered SCR device has been successfully verified in a fully-silicided 0.25-mum CMOS process  相似文献   
12.
The influence of gate-oxide reliability on common-source amplifiers with diode-connected active load is investigated with the nonstacked and stacked structures under analog application in a 130-nm low-voltage CMOS process. The test conditions of this work include the dc stress, ac stress with dc offset, and large-signal transition stress under different frequencies and signals. After overstresses, the small-signal parameters, such as small-signal gain, unity-gain frequency, phase margin, and output dc voltage levels, are measured to verify the impact of gate-oxide reliability on circuit performances of the common-source amplifiers with diode-connected active load. The small-signal parameters of the common-source amplifier with the nonstacked diode-connected active-load structure are strongly degraded than that with the stacked diode-connected active-load structure due to a gate-oxide breakdown under analog and digital applications. The common-source amplifiers with diode-connected active load are not functionally operational under digital application due to the gate-oxide breakdown. The impact of soft and hard gate-oxide breakdowns on the common-source amplifiers with nonstacked and stacked diode-connected active-load structures has been analyzed and discussed. The hard breakdown has more serious impact on the common-source amplifiers with diode-connected active load.  相似文献   
13.
A new electrostatic discharge (ESD) protection structure of high-voltage p-type silicon-controlled rectifier (HVPSCR) that is embedded into a high-voltage p-channel MOS (HVPMOS) device is proposed to greatly improve the ESD robustness of the vacuum-fluorescent-display (VFD) driver IC for automotive electronics applications. By only adding the additional n+ diffusion into the drain region of HVPMOS, the transmission-line-pulsing-measured secondary breakdown current of the output driver has been greatly improved to be greater than 6 A in a 0.5- mum high-voltage complementary MOS process. Such ESD-enhanced VFD driver IC, which can sustain human-body-model ESD stress of up to 8 kV, has been in mass production for automotive applications in cars without the latchup problem. Moreover, with device widths of 500, 600, and 800 mum, the machine-model ESD levels of the HVPSCR are as high as 1100,1300, and 1900 V, respectively.  相似文献   
14.
A new ball and beam system is constructed using a pair of magnetic suspension actuators in this paper. The proposed system can be used not only as a control theory verification and practice platform, but also as an educational demonstration and training tool for system integration of electrics, mechanics and cybernetics. The proposed control system activates two magnetic suspension actuators on either side of the beam. The magnetic force, as a function of position and coil current, was measured and modelled by a quadratic function. The system mathematical model is derived by the Lagrangian function. For control performance, a single chip microprocessor as control kernel with basic electronic components is designed and implemented. The ball and beam system hardware as well as microprocessor-based control circuit is implemented and tested. The static and dynamic performance of the ball and beam system is tested with several different scenarios. The system operation on oscillatory stabilization and sinusoidal tracking is verified with excellent operational characteristics.  相似文献   
15.
Two distributed electrostatic discharge (ESD) protection schemes are presented and applied to protect distributed amplifiers (DAs) against ESD stresses. Fabricated in a standard 0.25-/spl mu/m CMOS process, the DA with the first protection scheme of the equal-sized distributed ESD (ES-DESD) protection scheme, contributing an extra 300 fF parasitic capacitance to the circuit, can sustain the human-body model (HBM) ESD level of 5.5 kV and machine-model (MM) ESD level of 325 V and exhibits the flat-gain of 4.7 /spl plusmn/ 1 dB from 1 to 10 GHz. With the same amount of parasitic capacitance, the DA with the second protection scheme of the decreasing-sized distributed ESD (DS-DESD) protection scheme achieves better ESD robustness, where the HBM ESD level over 8 kV and MM ESD level is 575 V, and has the flat-gain of 4.9 /spl plusmn/ 1.1 dB over the 1 to 9.2-GHz band. With these two proposed ESD protection schemes, the broad-band RF performances and high ESD robustness of the DA can be successfully codesigned to meet the application specifications.  相似文献   
16.
17.
NMOS-based power-rail ESD clamp circuits with gate-driven mechanism have been widely used to obtain the desired ESD protection capability. All of them are usually based on a similar circuit scheme with multiple-stage inverters to drive the main ESD clamp NMOS transistor with large device dimension. In this work, the designs with 3-stage inverter and 1-stage inverter controlling circuits have been studied to verify the optimal circuit schemes in the NMOS-based power-rail ESD clamp circuits. Besides, the circuit performances among the main ESD clamp NMOS transistors drawn in different layout styles cooperated with the controlling circuit of 3-stage inverters or 1-stage inverter are compared. Among the NMOS-based power-rail ESD clamp circuits, an abnormal latch-on event has been observed under the EFT test and fast power-on condition. The root cause of this latch-on failure mechanism has been clearly explained by the emission microscope with InGaAs FPA detector.  相似文献   
18.
This paper presents a new electrostatic discharge (ESD) protection design for input/output (I/O) cells with embedded silicon-controlled rectifier (SCR) structure as power-rail ESD clamp device in a 130-nm CMOS process. Two new embedded SCR structures without latchup danger are proposed to be placed between the input (or output) pMOS and nMOS devices of the I/O cells. Furthermore, the turn-on efficiency of embedded SCR can be significantly increased by substrate-triggered technique. Experimental results have verified that the human-body-model (HBM) ESD level of this new proposed I/O cells can be greater than 5 kV in a 130-nm fully salicided CMOS process. By including the efficient power-rail ESD clamp device into each I/O cell, whole-chip ESD protection scheme can be successfully achieved within a small silicon area of the I/O cell.  相似文献   
19.
The turn-on mechanism of a silicon-controlled rectifier (SCR) device is essentially a current triggering event. While a current is applied to the base or substrate of the SCR device, it can be quickly triggered into its latching state. In this paper, a novel design concept to turn on the SCR device by applying the substrate-triggered technique is first proposed for effective on-chip electrostatic discharge (ESD) protection. This novel substrate-triggered SCR device has the advantages of controllable switching voltage and adjustable holding voltage and is compatible with general CMOS processes without extra process modification such as the silicide-blocking mask and ESD implantation. Moreover, the substrate-triggered SCR devices can be stacked in ESD protection circuits to avoid the transient-induced latch-up issue. The turn-on time of the proposed substrate-triggered SCR devices can be reduced from 27.4 to 7.8 ns by the substrate-triggering technique. The substrate-triggered SCR device with a small active area of only 20 /spl mu/m /spl times/ 20 /spl mu/m can sustain the HBM ESD stress of 6.5 kV in a fully silicided 0.25-/spl mu/m CMOS process.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号