首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   6篇
电工技术   5篇
化学工业   45篇
机械仪表   5篇
建筑科学   1篇
能源动力   1篇
轻工业   11篇
水利工程   1篇
无线电   18篇
一般工业技术   28篇
冶金工业   13篇
原子能技术   1篇
自动化技术   24篇
  2024年   1篇
  2023年   1篇
  2022年   6篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   3篇
  2017年   5篇
  2016年   8篇
  2015年   4篇
  2014年   7篇
  2013年   9篇
  2012年   9篇
  2011年   7篇
  2010年   9篇
  2009年   7篇
  2008年   9篇
  2007年   3篇
  2006年   6篇
  2005年   7篇
  2004年   1篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   5篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1985年   2篇
  1983年   1篇
  1978年   2篇
排序方式: 共有153条查询结果,搜索用时 13 毫秒
61.
The HiBRID-SoC multi-core system-on-chip architecture targets a wide range of multimedia applications with particularly high processing demands, including general signal processing applications, video de-/encoding, image processing, or a combination of these tasks. For this purpose, the HiBRID-SoC integrates three fully programmable processors cores and various interfaces onto a single chip, all tied to a 64-Bit AMBA AHB bus. The processor cores are individually optimized to the particular computational characteristics of different application fields, complementing each other to deliver high performance levels with high flexibility at reduced system cost. The HiBRID-SoC is fabricated in a 0.18 μm 6LM standard-cell CMOS technology, occupies about 81 mm2, and operates at 145 MHz. An MPEG-4 Advanced Simple Profile decoder in full D1 resolution requires about 120 MHz for real-time operation on the HiBRID-SoC, utilizing only two of the three cores. Together with the third core, a custom region-of-interest (ROI) based surveillance application can be built.Hans-Joachim Stolberg received the Dipl.-Ing. degree in electrical engineering from the University of Hannover, Germany, in 1995.From 1995 to 1996, he was with the NEC Information Technology Research Laboratories, Kawasaki, Japan, working on efficient implementations of video compression algorithms. Since 1996, he has been with the Institute of Microelectronic Systems at the University of Hannover as a Research Assistant. During summer 2001, he was a Monbukagakusho Research Fellow at the Tokyo Institute of Technology, Japan. His current research interests include VLSI architectures for video signal processing, performance estimation of multimedia schemes, and profile-guided memory organization for signal processing and multimedia applications.Mladen Bereković received the Dipl.-Ing. degree in electrical engineering from the University of Hannover, Germany, in 1995.Since then he has been a Research Assistant with the Institute of Microelectronic Systems of the University of Hannover. His current research interests include VLSI architectures for video signal processing, MPEG-4, System-on-Chip (SOC) designs, and simultaneously multi-threaded (SMT) processor architectures.Sören Moch received the Dipl.-Ing. degree in electrical engineering from the University of Hannover, Germany, in 1997.Since then he has been Research Assistant with the Laboratory for Information Technology, University of Hannover. His current research interests are in the area of processor architectures for image, video and multimedia signal processing applications.Lars Friebe studied electrical engineering at the Universities Ulm and Hannover, Germany. In 1999, he worked at the NEC System ULSI Research Laboratory in Kanagawa, Japan. He received the Dipl.-Ing. degree in electrical engineering from the University of Hannover, Germany, in 1999.Since then he has been a Research Assistant with the Laboratory for Information Technology, University of Hannover. His current research interests are in the area of parallel programmable VLSI architectures for real-time image processing.Mark B. Kulaczewski started his studies in electrical engineering at the University of Hannover, Germany. In 1994, he transferred to Purdue University, West Lafayette, USA, and received the M.S. degree in electrical engineering in 1996.Since 1997 he has been a Research Assistant at the Laboratory for Information Technology and the Institute of Microelectronic Systems, University of Hannover. His current research interests include programmable real-time architectures for video coding and image segmentation, and instruction-set extensions for cryptographic applications.Sebastian Flügel was born in Crivitz, Germany, in 1975. He received his Dipl.-Ing. degree from the Department of Electrical Engineering of the University of Rostock in 2001.Since then he has been a Ph.D. candidate at the Institute of Microelectronic Systems at the University of Hannover. He works in the field of architectures and systems for video processing systems. His focus is on algorithms for video encoding and the development of optimized hardware architectures.Heiko Klußmann received the Dipl.-Ing. degree in computer engineering from the University of Hannover, Germany, in 2002.Since then he has been a Research Assistant with the Institute of Microelectronic Systems of the University of Hannover. His current research interests are in the area of programmable architectures for real-time video signal processing.Andreas Dehnhardt was born in Frankfurt am Main, Germany, in 1976. He received his Dipl.-Ing. degree in electrical engineering from the University of Hannover, Germany, in 2002.Since then, he has been a Research Assistant with the Institute of Microelectronic Systems, University of Hannover. His current research interests include programmable architectures for multimedia applications and implementation of real-time MPEG-4 encoding schemes.Peter Pirsch received the Ing. grad. degree from the engineering college in Hannover, Hannover, Germany, in 1966, and the Dipl.-Ing. and Dr.-Ing. degrees from the University of Hannover, in 1973 and 1979, respectively, all in electrical engineering.From 1966 to 1973 he was employed by Telefunken, Hannover, working in the Television Department. He became a Research Assistant at the Department of Electrical Engineering, University of Hannover, in 1973, a Senior Engineer in 1978. During 1979 to 1980 and in Summer 1981 he was on leave, working in the Visual Communications Research Department, Bell Laboratories, Holmdel, NJ. During 1983 to 1986 he was Department Head for Digital Signal Processing at the SEL research center, Stuttgart. Since 1987 he is Professor in the Department of Electrical Engineering, since 2002 in the Department of Computer Science at the University of Hannover. He served as Vice President Research of the University of Hannover from 1998 to 2002. His present research includes architectures and VLSI implementations for image processing applications, rapid prototyping and design automation for DSP applications. He is the author or coauthor of more than 200 technical papers. He has edited a book on VLSI Implementations for Image Communications (Elsevier 1993) and is author of the book Architectures for Digital Signal Processing (John Wiley 1998).Pirsch is a member of the IEEE, the German Institute of Information Technology Engineers (ITG) and the German Association of Engineers (VDI). He was recipient of several awards: the NTG paper price award (1982), IEEE Fellow (1997), IEEE Circuits and Systems Golden Jubilee Medal (1999). He was member or chair of several technical program committees of international conferences and organizer of special sessions and preconference courses. He has held several administrative and technical positions with the IEEE Circuits and Systems Society and other professional organizations. Dr. Pirsch currently serves as Vice President Publications of the IEEE Circuits and Systems Society. Since 2000 he is chairman of the Accreditation Commission for Engineering and Informatics of the Accreditation Agency for Study Programs in Engineering, Informatics, Natural Science and Mathematics (ASIIN). Dr. Pirsch is chair of the VDI committee on Engineering Education.  相似文献   
62.
63.
The challenge raised by the introduction of Internet of Things (IoT) concept will permanently shape the networking and communications landscape and will therefore have a significant social impact. The ongoing IoT research activities are directed towards the definition and design of open architectures and standards, but there are still many issues requiring a global consensus before the final deployment. The paper presents and discusses the IoT architectural frameworks proposed under the ongoing standardization efforts, design issues in terms of IoT hardware and software components, as well as the IoT application domain representatives, such as smart cities, healthcare, agriculture, and nano-scale applications (addressed within the concept of Internet of Nano-Things). In order to obtain the performances related to recently proposed protocols for emerging Industrial Internet of Things applications, the preliminary results for Message Queuing Telemetry Transport and Time-Slotted Channel Hopping protocols are provided. The testing was performed on OpenMote hardware platform and two IoT operating systems: Contiki and OpenWSN.  相似文献   
64.
Some aspects of the nonlinear dynamics of the potential relaxation instability (PRI) that is triggered by a positive electrode (collector) in a weakly magnetized discharge plasma column are investigated experimentally. Some properties of the instability can be described by the van der Pol equation with an external force term. When the collector bias is increased the oscillations of plasma parameters become irregular. No low dimensional attractor can be positively identified for these signals. At high collector biases the plasma is probably in the state of a fully developed turbulence.  相似文献   
65.
A method for measuring the resonance frequency of contactless chip cards is proposed in this article. Compared to the vector network analyzer (VNA) based state‐of‐the‐art method, the method gives a more accurate definition of resonance frequency, removes the subjectivity associated with the state‐of‐the‐art method, and makes the measurement integrable into ISO‐standardized test setups. Signal processing and system modeling are applied in order to determine the maximum active power in the chip card over a chosen frequency range. This is achieved by using a transfer function obtained from the model and by setting a chirp signal as input to the system. The determined maximum of active power is mapped to the corresponding frequency in the chirp signal, which is defined as the resonance frequency. The proposed method is verified by simulations and by comparing measurement results with the state‐of‐the‐art. The results show that the proposed method offers significant advantages over the state‐of‐the‐art method.  相似文献   
66.
Recent experimental data on the diffusion coefficient of carbon in α-iron below the liquid nitrogen temperature (LNT) question the classical approach to the observed temperature dependence. As the temperature is lowered below the LNT, the diffusion constant tends toward a nearly temperature-independent value rather than continuing its activated trend. The low-temperature branch is apparently characteristic of a quantum mechanical process dominated by tunneling in the ground state. Concomitantly, we apply an occurrence-probability approach to describing the overall temperature dependence as a single continuous rate. Within the adiabatic approximation, the electronic eigen value, depending parametrically on the nuclear coordinates, is taken to be the potential energy to control the motion of the nuclei. The resulting rate involves all horizontal-tunneling energy-conserving elastic transitions at the quantized energy levels of the migrating atom. A small though not negligible slope in the temperature dependence as the temperature is raised below 100 K is dealt with by complementing for the rate of a parallel one-phonon inelastic-tunneling process in excess of the basic elastic-tunneling rate. Our combined approach agrees well with the experimental data. In particular, the frequency of the coupled vibration is obtained virtually identical to the carbon vibrational frequency from inelastic neutron scattering data. The migrational barrier is also found to be within the limits expected for α-iron.  相似文献   
67.
68.
In this paper, the ballistic resistance of perforated plates made of different types of steel, mounting and geometry was investigated. Different types of steel in various heat treatment conditions were tested. Target mounting was also varied: rigid, oblique and hanging. Furthermore, four different perforated plate geometries were tested: two plate thicknesses and two hole diameters. Their behaviour was tested using impact from firing 12.7 mm M-8 API ammunition at eleven perforated plate samples. These samples were placed by means of a steel frame over a 13 mm RHA plate, at two distances. Damaged area on targets was correlated to ballistic resistance of the whole armour to find the optimal perforated plate. It was found that perforated plates, in optimized case offer a frequent fracture of the penetrating core in up to five parts. This debris is unable to penetrate the basic plate, offering mass effectiveness of the whole armour model of 1.76 and the mass effectiveness of the perforated plate of 5.91.  相似文献   
69.
Isocratic reversed-phase HPLC with thermal lens spectrometric (TLS) detection enabled identification of linseed, olive, sesame, and wheat germ vegetable oils to control the authenticity of the oils based on characteristic carotenoid/carotene profiles. Four characteristic regions of carotenoids (i.e., lutein, xanthophyll, carotene, and lycopene) have been identified in each type of oil. The concentrations of total β-carotene (BC) and α-carotene (AC), together with trans-to cis-isomers of β-carotene (TBC/CBC) and BC/AC ratios were shown to be reliable and useful indices for fast screening of oils for nutritional quality. The oil TBC/CBC ratio and the BC concentration (in μg/mL) should meet the following numerical criteria: linseed (≽2∶1, ≽1.7), olive (≽3∶1, ≽0.4), sesame (≽1∶1, ≽0.1), and wheat germ oil (≽1∶1, ≽1.7). Based on the above criteria, unsatisfactory olive oils differed significantly from the consumable ones. Likewise, the concentration of AC in consumable wheat germ and sesame oil should not be lower than 0.6 and 0.02 μg/mL, respectively. The AC level in safflower oil should not be higher than 0.04 μg/mL. The BC/AC ratios exceeding 3∶1, 6∶1, and 8∶1 should be used as an additional quality requirement for consumable wheat germ, sesame, and safflower oil, respectively.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号