首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92651篇
  免费   1879篇
  国内免费   496篇
电工技术   963篇
综合类   2362篇
化学工业   13892篇
金属工艺   4975篇
机械仪表   3407篇
建筑科学   2525篇
矿业工程   583篇
能源动力   1749篇
轻工业   4508篇
水利工程   1416篇
石油天然气   494篇
武器工业   5篇
无线电   10154篇
一般工业技术   17868篇
冶金工业   2829篇
原子能技术   318篇
自动化技术   26978篇
  2024年   36篇
  2023年   206篇
  2022年   361篇
  2021年   649篇
  2020年   605篇
  2019年   734篇
  2018年   15052篇
  2017年   13920篇
  2016年   10579篇
  2015年   1051篇
  2014年   994篇
  2013年   1338篇
  2012年   3784篇
  2011年   10053篇
  2010年   8704篇
  2009年   5947篇
  2008年   6986篇
  2007年   7940篇
  2006年   265篇
  2005年   1303篇
  2004年   1224篇
  2003年   1229篇
  2002年   591篇
  2001年   126篇
  2000年   198篇
  1999年   80篇
  1998年   77篇
  1997年   53篇
  1996年   72篇
  1995年   30篇
  1994年   26篇
  1993年   25篇
  1992年   22篇
  1991年   40篇
  1988年   16篇
  1969年   24篇
  1968年   43篇
  1967年   34篇
  1966年   42篇
  1965年   44篇
  1963年   28篇
  1962年   22篇
  1961年   18篇
  1960年   30篇
  1959年   35篇
  1958年   37篇
  1957年   36篇
  1956年   34篇
  1955年   63篇
  1954年   68篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
This paper extends hybrid-type optimization models of genetic algorithm adaptive network-based fuzzy inference system (GA-ANFIS) for predicting the soil permeability coefficient (SPC) of different types of soil. In these models, GA optimizes parameters of a subtractive clustering technique that controls the structure of the ANFIS model’s fuzzy rule base. Simultaneously, a hybrid leaning algorithm is employed in the ANFIS, as a trained fuzzy inference system (FIS), which optimally determines the parameter sets of the examined FISs in ANFIS. Using an updated large database of SPCs consisting of 338 fine-grained, 178 mixed and 94 granular soil samples, GA-ANFIS framework constructs different models of predicting the permeability coefficient of respectively fine-grained, mixed and granular soils. A fuzzy C-mean technique has been used to cluster the entire data samples of each type of soil and divide them uniformly into training and testing data sets. Different prediction models of SPC have been trained and tested for each of the three soil types, and the appropriate models have been selected. The selected models have been compared with ANN and modified-by-GA empirical prediction models. Results show that the constructed GA-ANFIS models outperform the other models in terms of the prediction accuracy and the generalization capability.  相似文献   
992.
993.
This paper proposes a hybrid algorithm by combining backtracking search algorithm (BSA) and a neural network with random weights (NNRWs), called BSA-NNRWs-N. BSA is utilized to optimize the hidden layer parameters of the single layer feed-forward network (SLFN) and NNRWs is used to derive the output layer weights. In addition, to avoid over-fitting on the validation set, a new cost function is proposed to replace the root mean square error (RMSE). In the new cost function, a constraint is added by considering RMSE on both training and validation sets. Experiments on classification and regression data sets show promising performance of the proposed BSA-NNRWs-N.  相似文献   
994.
The potential benefits of using human resources efficiently in the service sector constitute an incentive for decision makers in this industry to intelligently manage the work shifts of their employees, especially those dealing directly with customers. In the long term, they should attempt to find the right balance between employing as few labor resources as possible and keeping a high level of service. In the short run (e.g., 1 week), however, contracted staff levels cannot be adjusted, and management efforts thus focus on the efficient assignment of shifts and activities to each employee. This article proposes a mixed integer program model that solves the short-term multi-skilled workforce tour scheduling problem, enabling decision makers to simultaneously design workers’ shifts and days off, assign activities to shifts and assign those to employees so as to maximize and balance coverage of a firm’s demand for on-duty staff across multiple activities. Our model is simple enough to be solved with a commercial MIP solver calibrated by default without recurring to complex methodologies, such as extended reformulations and exact and/or heuristic column generation subroutines. A wide computational testing over 1000 randomly generated instances suggests that the model’s solution times are compatible with daily use and that multi-skilling is a significant source of labor flexibility to improve coverage of labor requirements, in particular when such requirements are negatively correlated and part-time workers are a scarce resource.  相似文献   
995.
The resource leveling problem (RLP) involves the determination of a project baseline schedule that specifies the planned activity starting times while satisfying both the precedence constraints and the project deadline constraint under the objective of minimizing the variation in the resource utilization. However, uncertainty is inevitable during project execution. The baseline schedule generated by the deterministic RLP model tends to fail to achieve the desired objective when durations are uncertain. We study the robust resource leveling problem in which the activity durations are stochastic and the objective is to obtain a robust baseline schedule that minimizes the expected positive deviation of both resource utilizations and activity starting times. We present a genetic algorithm for the robust RLP. In order to demonstrate the effectiveness of our genetic algorithm, we conduct extensive computational experiments on a large number of randomly generated test instances and investigate the impact of different factors (the marginal cost of resource usage deviations, the marginal cost of activity starting time deviations, the activity duration variability, the due date, the order strength, the resource factor and the resource constrainedness).  相似文献   
996.
In this paper, we propose a metaheuristic for solving an original scheduling problem with auxiliary resources in a photolithography workshop of a semiconductor plant. The photolithography workshop is often a bottleneck, and improving scheduling decisions in this workshop can help to improve indicators of the whole plant. Two optimization criteria are separately considered: the weighted flow time (to minimize) and the number of products that are processed (to maximize). After stating the problem and giving some properties on the solution space, we show how these properties help us to efficiently solve the problem with the proposed memetic algorithm, which has been implemented and tested on large generated instances. Numerical experiments show that good solutions are obtained within a reasonable computational time.  相似文献   
997.
We study a number of variants of an abstract scheduling problem inspired by the scheduling of reclaimers in the stockyard of a coal export terminal. We analyze the complexity of each of the variants, providing complexity proofs for some and polynomial algorithms for others. For one, especially interesting variant, we also develop a constant factor approximation algorithm.  相似文献   
998.
An empirical analysis was performed to compare the effectiveness of different approaches to training a set of procedural skills to a sample of novice trainees. Sixty-five participants were randomly assigned to one of the following three training groups: (1) learning-by-doing in a 3D desktop virtual environment, (2) learning-by-observing a video (show-and-tell) explanation of the procedures, and (3) trial-and-error. In each group, participants were trained on two car service procedures. Participants were recalled to perform a procedure either 2 or 4 weeks after the training. The results showed that: (1) participants trained through the virtual approach of learning-by-doing performed both procedures significantly better (i.e. p < .05 in terms of errors and time) than people of non-virtual groups, (2) the virtual training group, after a period of non-use, were more effective than non-virtual training (i.e. p < .05) in their ability to recover their skills, (3) after a (simulated) long period from the training—i.e. up to 12 weeks—people who experienced 3D environments consistently performed better than people who received other kinds of training. The results also suggested that independently from the training group, trainees’ visuospatial abilities were a predictor of performance, at least for the complex service procedure, adj R 2 = .460, and that post-training performances of people trained through virtual learning-by-doing are not affected by learning styles. Finally, a strong relationship (p < .001, R 2 = .441) was identified between usability and trust in the use of the virtual training tool—i.e. the more the system was perceived as usable, the more it was perceived as trustable to acquire the competences.  相似文献   
999.
We study an offline scheduling problem arising in demand response management in a smart grid. Consumers send in power requests with a flexible set of timeslots during which their requests can be served. For example, a consumer may request the dishwasher to operate for 1 h during the periods 8am to 11am or 2pm to 4pm. The grid controller, upon receiving power requests, schedules each request within the specified duration. The electricity cost is measured by a convex function of the load in each timeslot. The objective of the problem is to schedule all requests with the minimum total electricity cost. As a first attempt, we consider a special case in which the power requirement and the duration a for which a request needs service are both unit-size. For this problem, we present a polynomial time offline algorithm that gives an optimal solution and shows that the time complexity can be further improved if the given set of timeslots forms a contiguous interval.  相似文献   
1000.
A unified variational theory is proposed for a general class of multiscale models based on the concept of Representative Volume Element. The entire theory lies on three fundamental principles: (1) kinematical admissibility, whereby the macro- and micro-scale kinematics are defined and linked in a physically meaningful way; (2) duality, through which the natures of the force- and stress-like quantities are uniquely identified as the duals (power-conjugates) of the adopted kinematical variables; and (3) the Principle of Multiscale Virtual Power, a generalization of the well-known Hill-Mandel Principle of Macrohomogeneity, from which equilibrium equations and homogenization relations for the force- and stress-like quantities are unequivocally obtained by straightforward variational arguments. The proposed theory provides a clear, logically-structured framework within which existing formulations can be rationally justified and new, more general multiscale models can be rigorously derived in well-defined steps. Its generality allows the treatment of problems involving phenomena as diverse as dynamics, higher order strain effects, material failure with kinematical discontinuities, fluid mechanics and coupled multi-physics. This is illustrated in a number of examples where a range of models is systematically derived by following the same steps. Due to the variational basis of the theory, the format in which derived models are presented is naturally well suited for discretization by finite element-based or related methods of numerical approximation. Numerical examples illustrate the use of resulting models, including a non-conventional failure-oriented model with discontinuous kinematics, in practical computations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号