首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   220篇
  免费   24篇
  国内免费   2篇
电工技术   2篇
化学工业   57篇
金属工艺   5篇
机械仪表   10篇
建筑科学   4篇
矿业工程   1篇
能源动力   11篇
轻工业   9篇
水利工程   1篇
石油天然气   1篇
无线电   32篇
一般工业技术   66篇
冶金工业   13篇
自动化技术   34篇
  2024年   1篇
  2023年   9篇
  2022年   14篇
  2021年   11篇
  2020年   14篇
  2019年   14篇
  2018年   28篇
  2017年   13篇
  2016年   16篇
  2015年   8篇
  2014年   15篇
  2013年   11篇
  2012年   12篇
  2011年   15篇
  2010年   10篇
  2009年   13篇
  2008年   11篇
  2007年   3篇
  2006年   3篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   5篇
  1994年   2篇
  1993年   1篇
  1992年   4篇
  1990年   2篇
  1984年   1篇
  1981年   1篇
排序方式: 共有246条查询结果,搜索用时 0 毫秒
91.
Unlike the structure-specific piezoelectric effect, flexoelectricity is a universal phenomenon that can offer a wide range of energy-efficient, cost-effective, mechano-opto-electro-coupled applications. Even though the flexoelectric effect has been extensively studied at nanoscale, a fundamental, yet unresolved, the issue is how it can be exploited at larger scales for potential applications. Herein, the long-range (>millimeter) stimulated and regulated impact of the localized inhomogeneous strain-induced flexoelectric potential on centrosymmetric metal/titanium oxide heterojunction with nanoscale precision (≈5.8 nm) is demonstrated. The noticed phenomenon is attributed to the long-range interaction between flexoelectric and build-in potentials, which is further utilized to develop mechanically regulated (enhancement > 104%), self-powered (i.e., 0 V), ultrafast (>10 million bits per second), and broadband (λ = 365–1720 nm) pyro-photosensors having high responsivity (≈1.18 mA W−1). As prospective applications, proof-of-concept ultrafast night movement monitors (>720 km h−1), high-performing stationery, and dynamic obstacle sensors with possible impact alerts are developed. These findings lay the groundwork for the micro-to-millimeter-range flexo-opto-electrical coupling in centrosymmetric materials, which can have a wide variety of practical applications.  相似文献   
92.
We systematically analyze power requirements of membrane and distillation processes for binary mixtures where the desired product component is more permeable and also more volatile. We first derive a shortcut method to compare the efficiency of heat pump and steam-driven distillations. Then, power requirements of heat pump distillation and membrane separation are discussed. Distillation generally requires lower power when either high component recoveries are needed (at all tested product purities), or high purity product streams with modest recoveries are needed. For high purity products at modest recoveries, membranes have a potential to provide energy benefits for highly enriched feeds, especially those composed of close boiling components. Additionally, when feed concentration is moderate to high and product recovery and purity are modest, membranes are likely to show efficiency gain. For the advantageous distillation scenarios studied, the power was generally lower than the membranes by a factor of two to seven.  相似文献   
93.
Singh  Ravi Pratap  Kataria  Ravinder  Singhal  Sandeep  Garg  R. K.  Tyagi  Mohit 《SILICON》2020,12(11):2587-2600
Silicon - The silicon dioxide (i.e. quartz) has been finely viewed as one of the exceedingly claimed contemporary ceramics which is getting broad engineering applications owing to its superior and...  相似文献   
94.
The present work is to examine the failure modes and failure loads in pin joints prepared from carbon/epoxy composite laminates with addition of multiwalled carbon nanotubes (MWCNT) as nanofillers. The effect of MWCNT in the carbon/epoxy composites was studied by adding 0.1 to 0.5 wt.% content in the epoxy resin. The maximum tensile strength was observed upto 0.3 wt.%, which is due to the enhanced interfacial bond strength and the efficient stress transfer between the stiff MWCNT and soft polymer matrix through refined polymer/MWCNT interface. The nanocomposite laminates for pin joints were prepared using optimised 0.3 wt.% of MWCNT. The different geometric combinations of width to diameter (W/D) and edge to diameter (E/D) ratios were varied from 2 to 5, respectively. The numerical analysis was performed using Hashin damage criteria along with progressive damage analysis to compare the predicted failure loads with the experimental results.  相似文献   
95.
Grover  Amit  Singh  Harmeet  Chhabra  Nipun  Angurala  Mohit  Singh  Mehtab 《Wireless Networks》2022,28(7):3045-3057
Wireless Networks - Congestion control techniques are considered to be one of the most imperative ways to overcome various challenges in wireless sensor networks (WSNs). Undeniably, congestion has...  相似文献   
96.
Projectors are increasingly being used as light-sources in computer vision applications. In several applications, they are modeled as point light sources, thus ignoring the effects of illumination defocus. In addition, most active vision techniques assume that a scene point is illuminated only directly by the light source, thus ignoring global light transport effects. Since both defocus and global illumination co-occur in virtually all scenes illuminated by projectors, ignoring them can result in strong, systematic biases in the recovered scene properties. To make computer vision techniques work for general real world scenes, it is thus important to account for both these effects.  相似文献   
97.
A novel method for the robust identification of interpretable fuzzy models, based on the criterion that identification errors are least sensitive to data uncertainties and modelling errors, is suggested. The robustness of identification errors towards unknown disturbances (data uncertainties, modelling errors, etc.) is achieved by bounding (i.e. minimizing) the maximum possible value of energy-gain from disturbances to the identification errors. The solution of energy-gain bounding problem, being robust, shows an improved performance of the identification method. The flexibility of the proposed framework is shown by designing the variable learning rate identification algorithms in both deterministic and stochastic frameworks.  相似文献   
98.
Grain boundaries (GBs) are crucial for solar cells incorporating polycrystalline absorbers and particularly for those characterized by small grain sizes (≈2 µm). For example, random GBs in Si solar cells are found to have a detrimental effect on the cell performance being characterized by an increased recombination activity relative to grains. Yet, their role in Cu(In,Ga)Se2 (CIGS) solar cells still remains controversial. The recent electron‐beam‐induced current (EBIC) study shows that 58% of the GBs in CIGS exhibit enhanced electrical properties considered to be benign (for the device performance). Yet, they coexist with 16% detrimental GBs (reduced electrical properties) and 27% neutral ones (no change in electrical property when compared with the bulk). In the present study, these different GBs are investigated by combining EBIC with electron backscattered diffraction and atom probe tomography techniques on identical GBs. For the first time, a successful correlation is shown (for any device) that interconnects the GB characteristics to its composition. Sufficient statistics demonstrate that the collective fluctuations of all elements at GBs determine its trait. In general, benign (detrimental) GBs are characterized by Cu depletion (enrichment) that favored the formation of donor (acceptor) defects.  相似文献   
99.
Global or indirect illumination effects such as interreflections and subsurface scattering severely degrade the performance of structured light-based 3D scanning. In this paper, we analyze the errors in structured light, caused by both long-range (interreflections) and short-range (subsurface scattering) indirect illumination. The errors depend on the frequency of the projected patterns, and the nature of indirect illumination. In particular, we show that long-range effects cause decoding errors for low-frequency patterns, whereas short-range effects affect high-frequency patterns. Based on this analysis, we present a practical 3D scanning system which works in the presence of a broad range of indirect illumination. First, we design binary structured light patterns that are resilient to individual indirect illumination effects using simple logical operations and tools from combinatorial mathematics. Scenes exhibiting multiple phenomena are handled by combining results from a small ensemble of such patterns. This combination also allows detecting any residual errors that are corrected by acquiring a few additional images. Our methods can be readily incorporated into existing scanning systems without significant overhead in terms of capture time or hardware. We show results for several scenes with complex shape and material properties.  相似文献   
100.
ZnO is one of the most promising candidate for photoelectrochemical splitting of water for hydrogen production. To increase the efficiency of ZnO based photoelectrochemical cell, its band-gap and band edges should be tailored to match visible light spectra and water redox potential respectively. In this paper, First-principles density functional theory calculations have been performed to evaluate the effect of non-metal dopants on electronic properties of ZnO. The model structures of X-doped ZnO were constructed using 32-atom 2 × 2 × 2 supercell of wurtzite ZnO with one O atom replaced with X (carbon C, phosphorus P). With respect to the electronic band structure, C (2p), P (3p) states are located above the valence band maximum of ZnO and mixing of these states is feeble to produce significant band gap narrowing. Doping of these non-metals dopants helps in the creation of isolated states which enhances visible light absorption of ZnO. Our theoretical calculations are consistent with the experimental results of C (P) doped ZnO and fully explains its visible light activity on non-metal doping.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号