全文获取类型
收费全文 | 44980篇 |
免费 | 3774篇 |
国内免费 | 1561篇 |
专业分类
电工技术 | 2450篇 |
技术理论 | 1篇 |
综合类 | 2021篇 |
化学工业 | 8140篇 |
金属工艺 | 2249篇 |
机械仪表 | 2961篇 |
建筑科学 | 2771篇 |
矿业工程 | 991篇 |
能源动力 | 1316篇 |
轻工业 | 3522篇 |
水利工程 | 668篇 |
石油天然气 | 1681篇 |
武器工业 | 271篇 |
无线电 | 6300篇 |
一般工业技术 | 6860篇 |
冶金工业 | 2062篇 |
原子能技术 | 581篇 |
自动化技术 | 5470篇 |
出版年
2024年 | 193篇 |
2023年 | 817篇 |
2022年 | 1518篇 |
2021年 | 1979篇 |
2020年 | 1480篇 |
2019年 | 1304篇 |
2018年 | 1461篇 |
2017年 | 1631篇 |
2016年 | 1446篇 |
2015年 | 1755篇 |
2014年 | 2284篇 |
2013年 | 2728篇 |
2012年 | 2897篇 |
2011年 | 3157篇 |
2010年 | 2552篇 |
2009年 | 2606篇 |
2008年 | 2510篇 |
2007年 | 2140篇 |
2006年 | 2136篇 |
2005年 | 1784篇 |
2004年 | 1290篇 |
2003年 | 1253篇 |
2002年 | 1216篇 |
2001年 | 1023篇 |
2000年 | 1004篇 |
1999年 | 1035篇 |
1998年 | 1004篇 |
1997年 | 787篇 |
1996年 | 655篇 |
1995年 | 555篇 |
1994年 | 433篇 |
1993年 | 338篇 |
1992年 | 292篇 |
1991年 | 202篇 |
1990年 | 176篇 |
1989年 | 171篇 |
1988年 | 113篇 |
1987年 | 91篇 |
1986年 | 50篇 |
1985年 | 65篇 |
1984年 | 34篇 |
1983年 | 28篇 |
1982年 | 31篇 |
1981年 | 17篇 |
1980年 | 14篇 |
1979年 | 8篇 |
1978年 | 10篇 |
1977年 | 10篇 |
1976年 | 8篇 |
1973年 | 6篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
T. Choi J.‐H. Jang C.K. Ullal M.C. LeMieux V.V. Tsukruk E.L. Thomas 《Advanced functional materials》2006,16(10)
The probing of the micromechanical properties within a two‐dimensional polymer structure with sixfold symmetry fabricated via interference lithography reveals a nonuniform spatial distribution in the elastic modulus “imprinted” with an interference pattern in work reported by Tsukruk, Thomas, and co‐workers on p. 1324. The image prepared by M. Lemieux and T. Gorishnyy shows how the interference pattern is formed by three laser beams and is transferred to the solid polymer structure. The elastic and plastic properties within a two‐dimensional polymer (SU8) structure with sixfold symmetry fabricated via interference lithography are presented. There is a nonuniform spatial distribution in the elastic modulus, with a higher elastic modulus obtained for nodes (brightest regions in the laser interference pattern) and a lower elastic modulus for beams (darkest regions in the laser interference pattern) of the photopatterned films. We suggest that such a nonuniformity and unusual plastic behavior are related to the variable material properties “imprinted” by the interference pattern. 相似文献
993.
994.
Lu Liu Yao Ni Jiaqi Liu Yihang Wang Chengpeng Jiang Wentao Xu 《Advanced functional materials》2023,33(9):2210119
The autonomic nervous system maintains homeostasis in organisms through complex neural pathways and responds adaptively to changes in the external and internal environment. The fabrication of an artificial autonomic nervous system is reported that replicates combined effects of sympathetic and parasympathetic nerves on cardiac activity and pupillary control, to mimic the regulation of autonomic nervous system to external changes. The artificial autonomic nerve-controlled pupil contraction and relaxation, modulating the rate of heartbeats for normal cardiac rhythm and arrhythmia as reflected by blink rates of a signal indicator. These functions are switched by using a parallel-channeled synaptic transistor with a special n-i-p heterostructure that has a 2D h-BN insulator in the middle to provide barrier against ion injection into the 2D MoS2 bottom n-channel and enable short-term plasticity as induced by acetylcholine, and the electrochemical doping reaction occurred at the P3HT nanowire p-channels on top to enable relatively long-term plasticity as induced by noradrenaline. Low-energy consumption down to femtojoule and an ultrahigh paired-pulse facilitation index up to ≈455% are demonstrated. An artificial neural network based on device characteristics achieves a high recognition accuracy for electrocardiogram patterns. This study extends insights into artificial nerves-inspired biological signal processing and recognition. 相似文献
995.
Kexin Wang Junhui Cao Xiaoxuan Yang Xiahan Sang Siyu Yao Rong Xiang Bin Yang Zhongjian Li Thomas O'Carroll Qinghua Zhang Lecheng Lei Gang Wu Yang Hou 《Advanced functional materials》2023,33(16):2212321
Designing hydrogen evolution reaction (HER) electrocatalysts for facilitating its sluggish adsorption kinetics is crucial in generating green hydrogen via sustainable water electrolysis. Herein, a high-performance ultra-low Ruthenium (Ru) catalyst is developed consisting of atomically-layered Ru nanoclusters with adjacent single Ru sites, which executs a bridging-Ru-H activation strategy to kinetically accelerate the HER elementary steps. Owing to its optimal electronic structure and unique adsorption configuration, the hybrid Ru catalyst simultaneously displayed a drastically reduced overpotential of 16 mV at 10 mA cm−2 as well as a low Tafel slope of 35.2 mV dec−1 in alkaline electrolyte. When further coupled with a commercial IrO2 anode catalyst, the ensembled anion-exchange membrane water electrolyzer achievs a current density of 1.0 A cm−2 at a voltage of only 1.70 Vcell. In situ spectroscopic analysis verified that Ru single atom and atomically-layered Ru nanoclusters in the hybrid materials play a critical role in facilitating water dissociation and weakening *H adsorption, respectively. Theoretical calculations further elucidate the underlaying mechanism, suggesting that the dissociated proton at the single atom Ru site orients itself adjacently with Ru nanoclusters in a bridged structure through targeted charge transfer, thus promoting Volmer-Heyrovsky dynamics and boosting the HER activity. 相似文献
996.
Wonjun Choi Sungjae Hong Yeonsu Jeong Yongjae Cho Hyung Gon Shin Ji Hoon Park Yeonjin Yi Seongil Im 《Advanced functional materials》2021,31(9):2009436
Among many of 2D semiconductor-based devices, type III PN junction diodes are given special attentions due to their unique function, negative differential resistance (NDR). However, it has been found uneasy to achieve well-matched type III PN junctions from 2D–2D van der Waals heterojunctions. Here, the authors present other alternatives of type III heterojunctions, using 2D p-MoTe2/organic n-type dipyrazino[2,3-f:2′,3′-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile (HAT-CN) and 2D p-WSe2/n-MoOx systems. Those junction diodes appear to well-demonstrate static and dynamic NDR behavior via resonant tunneling and electron–hole recombination. Extended to an inverter circuit, p-MoTe2/n-HAT-CN diode enables multilevel inverter characteristics as monolithically integrated with p-MoTe2 channel field effect transistor. The same NDR diode shows dynamic LC oscillation behavior under a constant DC voltage, connected to an external inductor. From p-WSe2/n-MoOx oxide diode, similar NDR behavior to those of p-MoTe2/n-HAT-CN is again observed along with LC oscillations. The authors attribute these visible oscillation results to high peak-to-valley current ratios of their organic or oxide/2D heterojunction diodes. 相似文献
997.
Hye-Seon Jeong Eunseo Kim Changwoo Nam Yoon Choi You-Jeong Lee David A. Weitz Hyomin Lee Chang-Hyung Choi 《Advanced functional materials》2021,31(18):2009553
A hydrogel microcapsule with an intermediate thin oil layer is presented to achieve smart release of a broad range of cargoes triggered via diverse stimuli. A microfluidic technique is used to produce triple emulsion droplets with a thin oil layer that separates the innermost aqueous phase from the hydrogel prepolymer phase, which transforms into a hydrogel shell via photopolymerization. The intermediate oil layer within the hydrogel microcapsule acts as an effective diffusion barrier, allowing encapsulation of various small cargoes within a porous hydrogel shell until a stimulus is applied to destabilize the oil layer. It is demonstrated that diverse stimuli including chemical dissolution, mechanical stress, and osmotic pressure can be utilized to release the encapsulated cargo on-demand. In addition, osmotic pressure and the hydrogel shell thickness can be independently tuned to control the onset time of release as well as the release behavior of multi-cargo encapsulated hydrogel microcapsule. The release can be either simultaneous or selective. 相似文献
998.
Rui-Qi Yao Yi-Tong Zhou Hang Shi Wu-Bin Wan Qing-Hua Zhang Lin Gu Yong-Fu Zhu Zi Wen Xing-You Lang Qing Jiang 《Advanced functional materials》2021,31(10):2009613
Electrocatalytic hydrogen evolution in alkaline and neutral media offers the possibility of adopting platinum-free electrocatalysts for large-scale electrochemical production of pure hydrogen fuel, but most state-of-the-art electrocatalytic materials based on nonprecious transition metals operate at high overpotentials. Here, a monolithic nanoporous multielemental CuAlNiMoFe electrode with electroactive high-entropy CuNiMoFe surface is reported to hold great promise as cost-effective electrocatalyst for hydrogen evolution reaction (HER) in alkaline and neutral media. By virtue of a surface high-entropy alloy composed of dissimilar Cu, Ni, Mo, and Fe metals offering bifunctional electrocatalytic sites with enhanced kinetics for water dissociation and adsorption/desorption of reactive hydrogen intermediates, and hierarchical nanoporous Cu scaffold facilitating electron transfer/mass transport, the nanoporous CuAlNiMoFe electrode exhibits superior nonacidic HER electrocatalysis. It only takes overpotentials as low as ≈240 and ≈183 mV to reach current densities of ≈1840 and ≈100 mA cm−2 in 1 m KOH and pH 7 buffer electrolytes, respectively; ≈46- and ≈14-fold higher than those of ternary CuAlNi electrode with bimetallic Cu–Ni surface alloy. The outstanding electrocatalytic properties make nonprecious multielemental alloys attractive candidates as high-performance nonacidic HER electrocatalytic electrodes in water electrolysis. 相似文献
999.
Young Been Kim Sung Hyeon Jung Dong Su Kim Nishad G. Deshpande Hee Won Suh Hak Hyeon Lee Ji Hoon Choi Ho Seong Lee Hyung Koun Cho 《Advanced functional materials》2021,31(38):2102439
Antimony triselenide (Sb2Se3) nanoflake-based nitrogen dioxide (NO2) sensors exhibit a progressive bifunctional gas-sensing performance, with a rapid alarm for hazardous highly concentrated gases, and an advanced memory-type function for low-concentration (<1 ppm) monitoring repeated under potentially fatal exposure. Rectangular and cuboid shaped Sb2Se3 nanoflakes, comprising van der Waals planes with large surface areas and covalent bond planes with small areas, can rapidly detect a wide range of NO2 gas concentrations from 0.1 to 100 ppm. These Sb2Se3 nanoflakes are found to be suitable for physisorption-based gas sensing owing to their anisotropic quasi-2D crystal structure with extremely enlarged van der Waals planes, where they are humidity-insensitive and consequently exhibit an extremely stable baseline current. The Sb2Se3 nanoflake sensor exhibits a room-temperature/low-voltage operation, which is noticeable owing to its low energy consumption and rapid response even under a NO2 gas flow of only 1 ppm. As a result, the Sb2Se3 nanoflake sensor is suitable for the development of a rapid alarm system. Furthermore, the persistent gas-sensing conductivity of the sensor with a slow decaying current can enable the development of a progressive memory-type sensor that retains the previous signal under irregular gas injection at low concentrations. 相似文献
1000.
Jiajia Suo Bowen Yang Edoardo Mosconi Hyeon-Seo Choi YeonJu Kim Shaik M. Zakeeruddin Filippo De Angelis Michael Grätzel Hui-Seon Kim Anders Hagfeldt 《Advanced functional materials》2021,31(34):2102902
Surface passivation treatment is a widely used strategy to resolve trap-mediated nonradiative recombination toward high-efficiency metal-halide perovskite photovoltaics. However, a lack of passivation with mixture treatment has been investigated, as well as an in-depth understanding of its passivation mechanism. Here, a systematic study on a mixed-salt passivation strategy of formamidinium bromide (FABr) coupled with different F-substituted alkyl lengths of ammonium iodide is demonstrated. It is obtained better device performance with decreasing chain length of the F-substituted alkyl ammonium iodide in the presence of FABr. Moreover, they unraveled a synergistic passivation mechanism of the mixed-salt treatment through surface reconstruction engineering, where FABr dominates the reformation of the perovskite surface via reacting with the excess PbI2. Meanwhile, ammonium iodide passivates the perovskite grain boundaries both on the surface and top perovskite bulk through penetration. This synergistic passivation engineer results in a high-quality perovskite surface with fewer defects and suppressed ion migration, leading to a champion efficiency of 23.5% with mixed-salt treatment. In addition, the introduction of the moisture resisted F-substituted groups presents a more hydrophobic perovskite surface, thus enabling the decorated devices with excellent long-term stability under a high humid atmosphere as well as operational conditions. 相似文献