首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   0篇
  国内免费   2篇
电工技术   6篇
综合类   1篇
化学工业   46篇
能源动力   6篇
轻工业   16篇
无线电   4篇
一般工业技术   7篇
冶金工业   4篇
原子能技术   1篇
自动化技术   7篇
  2022年   2篇
  2018年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   15篇
  2012年   3篇
  2011年   4篇
  2010年   4篇
  2009年   2篇
  2006年   4篇
  2005年   1篇
  2004年   3篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   3篇
  1995年   4篇
  1994年   4篇
  1993年   1篇
  1992年   4篇
  1991年   4篇
  1990年   1篇
  1989年   5篇
  1988年   3篇
  1987年   4篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1981年   2篇
  1979年   3篇
  1978年   3篇
  1977年   1篇
排序方式: 共有98条查询结果,搜索用时 0 毫秒
81.
The specificity of rabbit antibodies produced by injection of 1-O-(15'-carboxypentadecyl)-2-N,N-dimethylcar-bamoyl-sn-glycero-3-phosphocholine bovine serum albumin (BSA) conjugates was examined by a thin-layer chromatography (TLC)/immunostaining method. Phosphatidylcholine (PC), lysophosphatidylcholine (lysoPC), lyso platelet-activating factor (lysoPAF), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylserine (PS), sphingomyelin (SM), phosphatidylinositol (PI), phosphatidic acid (PA) and cardiolipin (CL) were not immunostained. Among several synthetic PAF-related compounds, the antibodies only bound to PAF agonists which have the activity to induce washed rabbit platelet aggregation. The results suggest that the binding sites of the antibodies on the PAF molecule are the acetyl group at thesn-2 position and the choline moiety at thesn-3 position of glycerol, both of which are essential for exerting the biological function of PAF and for binding to the PAF receptors located on cellular membranes. Based on a paper presented at the Third International Conference on Platelet-Activating Factor and Structurally Related Alkyl Ether Lipids, Tokyo, Japan, May 1989.  相似文献   
82.
Cationic exchange membranes were prepared with 2,3-epithiopropyl methacrylate (ETMA)–methacrylic acid (MAc) copolymer. Transport of alkali metal ions against their concentration gradient through the membranes was investigated by using the system which contains HCl (left side) and alkali metal solution including two kinds of alkali hydroxides (right side). The effect of ultraviolet (UV) irradiation on the selective transport of alkali metal ions through the ETMA–MAc copolymer membranes was investigated. The membranes were irradiated with a 6-W low pressure mercury lamp at a distance of 10 cm at room temperature in air. The transport selectivity could be increased by using UV-irradiated membranes and the selectivity increased with increasing irradiation time up to 2–3 h, although the transport rate of alkali metal ions decreased with increasing time of UV irradiation. The maximum selectivity of K+/Na+, Na+/Li+, and K+/Li+ were 1.7, 2.0, and 4.2, respectively. In order to explain this phenomena, the effect of UV irradiation on the properties of the membranes was studied. It was concluded that the increase of the selectivity is attributed to the formation of the dense membrane by photocrosslinking of the membrane by UV irradiation.  相似文献   
83.
Conventional anti-cancer therapies based on chemo- and/or radiotherapy represent highly effective means to kill cancer cells but lack tumor specificity and, therefore, result in a wide range of iatrogenic effects. A promising approach to overcome this obstacle is spliceosome-mediated RNA trans-splicing (SMaRT), which can be leveraged to target tumor cells while leaving normal cells unharmed. Notably, a previously established RNA trans-splicing molecule (RTM44) showed efficacy and specificity in exchanging the coding sequence of a cancer target gene (Ct-SLCO1B3) with the suicide gene HSV1-thymidine kinase in a colorectal cancer model, thereby rendering tumor cells sensitive to the prodrug ganciclovir (GCV). In the present work, we expand the application of this approach, using the same RTM44 in aggressive skin cancer arising in the rare genetic skin disease recessive dystrophic epidermolysis bullosa (RDEB). Stable expression of RTM44, but not a splicing-deficient control (NC), in RDEB-SCC cells resulted in expression of the expected fusion product at the mRNA and protein level. Importantly, systemic GCV treatment of mice bearing RTM44-expressing cancer cells resulted in a significant reduction in tumor volume and weight compared with controls. Thus, our results demonstrate the applicability of RTM44-mediated targeting of the cancer gene Ct-SLCO1B3 in a different malignancy.  相似文献   
84.
85.
Cationic exchange membranes were prepared with 2,3-epithiopropyl methacrylate (ETMA)–methacrylic acid (MAc) copolymer. Transport of Li+ against its concentration gradient through the membranes was investigated by using the system containing HCl and LiCl (left side) and LiOH (right side). The rate of transport of Li+ increased with increasing MAc content in the membranes with less than 56.3 mol % MAc. The rate of transport and transport fraction of Li+ could be increased by using the copolymer membranes irradiated with ultraviolet light, because the physical and chemical structure of the membrane made of ETMA–MAc copolymer can be easily changed by irradiation with ultraviolet light. The transport in this system, where one side of the membrane in a cell was acidic and the other alkaline, was influenced significantly by the initial H+ concentration on the acidic side.  相似文献   
86.
A radioimmunoassay (RIA) for measurement of platelet-activating factor (PAF) was developed. At a final antiserum dilution of 1∶640, the lowest detection limit of PAF was 0.1 pmol (50 pg). The standard curve obtained was suitable for measurement of PAF in amounts ranging from 0.1 pmol to 30 pmol. The antiserum showed high specificity. Cross-reaction for lysoPAF, lysophosphatidylcholine and long-chain phosphati-dylcholines was very low (less than 0.025%). 1-Palmitoyl-2-acetyl-sn-glycero-3-phosphocholine cross-reacted slightly (6.25%). PAF exogenously added to macrophage suspensions was quantitatively determined by RIA after solvent extraction and high-performance liquid chromatographic separation. RIA was also used to estimate PAF formation after stimulation of rabbit alveolar macrophages in suspension with calcium ionophore A23187.  相似文献   
87.
New asymmetric hollow fiber reverse osmosis (RO) membrane was developed from a new chlorine‐resistant copolyamide [4T‐PIP(30)] with a piperazine moiety by a conventional phase‐separation method. The new 4T‐PIP(30) hollow fiber membrane has the same low‐pressure RO performance as cellulose triacetate hollow fiber membrane (FR = 205 L/m2 day, Rj = 99.6%) and superior chlorine resistance as well as pH resistance to conventional aramid RO membranes. Structural analysis and viscoelastic study revealed that the new hollow fiber consisted of a top skin, dense layer, and microporous layer, and that it began to decrease its elasticity at 80°C in water, which is possibly related to its good and stable RO performance around room temperature. Several kinds of RO modules were made from the new hollow fiber membranes, for which RO performances were stable for 2 years in chlorinated feed water desalination (the free residual chlorine ranged from 0.l to 1.1 mg/L). © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 517–527, 2001  相似文献   
88.
In this article, we report a novel reversible crosslinking–decrosslinking system consisting of a polymer bearing vicinal tricarbonyl moieties in its side chains and poly(ethylene glycol) (PEG). A mixture of the tricarbonyl polymer and PEG (0.1 equiv of OH groups relative to the vicinal tricarbonyl moieties) in CH2Cl2 spontaneously turned into an orange-colored gel, in which a network structure was formed through hemiketal linkages. Conversely, the resulting networked polymer could be decrosslinked by treatment with water-containing solvent to recover the linear vicinal tricarbonyl polymer as its hydrate in 90 % yield. Following dehydration process by heating at 100 °C under reduced pressure regenerated the original vicinal tricarbonyl polymer.  相似文献   
89.
Crystalline ZnS films were prepared on glass substrates from a high-crystallinity ZnS pellet using an ion-plating method. The crystallinity and friction-induced photon-emitting capability (triboluminescence) of the films were greatly enhanced by postannealing under vacuum. The annealing treatment made the ZnS films strongly adherent to the glass substrate and enhanced their endurance to friction. This greatly enhanced ZnS as a stress/friction sensor for various applications.  相似文献   
90.
The hydroxyapatite (HAp) powder preparation process was optimized to fabricate inositol phosphate-HAp (IP6-HAp) cement with enhanced mechanical properties. Starting HAp powders were synthesized via a wet chemical process. The effect of the powder preparation process on the morphology, crystallinity, median particle size, and specific surface area (SSA) of the cement powders was examined, together with the mechanical properties of the resulting cement specimens. The smallest crystallite and median particle sizes, and the highest SSA were obtained from ball-milling of as-synthesized HAp powder under wet conditions and then freeze-drying. IP6-HAp cement fabricated with this powder had a maximum compressive strength of 23.1 ± 2.1 MPa. In vivo histological studies using rabbit models revealed that the IP6-HAp cements were directly in contact with newly formed and host bones. Thus, the present chelate-setting HAp cement is promising for application as a novel paste-like artificial bone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号