首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2022篇
  免费   122篇
  国内免费   9篇
电工技术   37篇
综合类   4篇
化学工业   494篇
金属工艺   72篇
机械仪表   105篇
建筑科学   29篇
能源动力   64篇
轻工业   204篇
水利工程   6篇
无线电   383篇
一般工业技术   404篇
冶金工业   131篇
原子能技术   25篇
自动化技术   195篇
  2024年   4篇
  2023年   34篇
  2022年   57篇
  2021年   75篇
  2020年   61篇
  2019年   74篇
  2018年   64篇
  2017年   69篇
  2016年   77篇
  2015年   59篇
  2014年   87篇
  2013年   132篇
  2012年   128篇
  2011年   151篇
  2010年   111篇
  2009年   105篇
  2008年   109篇
  2007年   79篇
  2006年   83篇
  2005年   72篇
  2004年   63篇
  2003年   50篇
  2002年   61篇
  2001年   51篇
  2000年   44篇
  1999年   42篇
  1998年   60篇
  1997年   40篇
  1996年   23篇
  1995年   11篇
  1994年   10篇
  1993年   12篇
  1992年   7篇
  1991年   7篇
  1990年   7篇
  1989年   7篇
  1988年   6篇
  1987年   4篇
  1986年   6篇
  1985年   3篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1976年   3篇
  1973年   1篇
排序方式: 共有2153条查询结果,搜索用时 0 毫秒
41.
We fabricated high-performance thin-film transistors (TFTs) with an amorphous-Al–Sn–Zn–In–O (a-AT-ZIO) channel deposited by cosputtering using a dual Al–Zn–O and In–Sn–O target. The fabricated AT-ZIO TFTs, which feature a bottom-gate and bottom-contact configuration, exhibited a high field-effect mobility of 31.9 $ hbox{cm}^{2}/hbox{V}cdothbox{s}$, an excellent subthreshold gate swing of 0.07 V/decade, and a high $I_{{rm on}/{rm off}}$ ratio of $≫hbox{10}^{9}$, even below the process temperature of 250 $^{circ}hbox{C}$. In addition, we demonstrated that the temperature and bias-induced stability of the bottom-gate TFT structure can significantly be improved by adopting a suitable passivation layer of atomic-layer-deposition-derived $hbox{Al}_{2} hbox{O}_{3}$ thin film.   相似文献   
42.
The fluorobenzotriazole (FTAZ)‐based copolymer donors are promising candidates for nonfullerene polymer solar cells (PSCs), but suffer from relatively low photovoltaic performance due to their unsuitable energy levels and unfavorable morphology. Herein, three polymer donors, L24 , L68 , and L810 , based on a chlorinated‐thienyl benzodithiophene (BDT‐2Cl) unit and FTAZ with different branched alkyl side chain, are synthesized. Incorporation of a chlorine (Cl) atom into the BDT unit is found to distinctly optimize the molecular planarity, energy levels, and improve the polymerization activity. Impressively, subtle side chain length of FTAZ realizes a dramatic improvement in all the device parameters, as revealed by the short‐current density (Jsc) improved from 7.41 to 20.76 mA cm?2, fill‐factor from 36.3 to 73.5%, and even the open‐circuit voltage (Voc) from 0.495 to 0.790 V. The best power conversion efficiency (PCE) of 12.1% is obtained from the L810‐based device, which is one of the highest values reported for FTAZ‐based PSCs so far. Notably, the corresponding external quantum efficiency curve keeps a very prominent value up to 80% from 500 to 800 nm. The notable performance is discovered from the reduced energy loss, improved molecular face‐on orientation, the down‐shifted energy levels, and optimized absorption coefficient regulated by side‐chain engineering.  相似文献   
43.
We report on the spectral tunability of white light by localized surface plasmon (LSP) effect in a colour converting hybrid device made of CdSe/ZnS quantum dots (QDs) integrated on InGaN/GaN blue light-emitting diodes (LEDs). Silver (Ag) nanoparticles (NPs) are mixed with QDs for generating LSP effect. When the plasmon absorption of Ag NPs is synchronized to the QW emission at 448 nm, the NPs selectively absorb the blue light and subsequently enhance the QD emission. Using this energy transfer scheme, the (xy) chromaticity coordinates of the hybrid white LED was tuned from (0.32, 0.17) to (0.43, 0.26), and thereby generated warm white light emission with correlated colour temperature (CCT) around 1800 K. Moreover, a 47% enhancement in the external quantum efficiency (EQE) was realized.  相似文献   
44.
Recent advances in optical clearing techniques have dramatically improved deep tissue imaging by reducing the obscuring effects of light scattering and absorption. However, these optical clearing methods require specialized equipment or a lengthy undertaking with complex protocols that can lead to sample volume changes and distortion. In addition, the imaging of cleared tissues has limitations, such as fluorescence bleaching, harmful and foul-smelling solutions, and the difficulty of handling samples in high-viscosity refractive index (RI) matching solutions. To address the various limitations of thick tissue imaging, we developed an Aqueous high refractive Index matching and tissue Clearing solution for Imaging (termed AICI) with a one-step tissue clearing protocol that was easily made at a reasonable price in our own laboratory without any equipment. AICI can rapidly clear a 1 mm thick brain slice within 90 min with simultaneous RI matching, low viscosity, and a high refractive index (RI = 1.466), allowing the imaging of the sample without additional processing. We compared AICI with commercially available RI matching solutions, including optical clear agents (OCAs), for tissue clearing. The viscosity of AICI is closer to that of water compared with other RI matching solutions, and there was a less than 2.3% expansion in the tissue linear morphology during 24 h exposure to AICI. Moreover, AICI remained fluid over 30 days of air exposure, and the EGFP fluorescence signal was only reduced to ~65% after 10 days. AICI showed a limited clearing of brain tissue >3 mm thick. However, fine neuronal structures, such as dendritic spines and axonal boutons, could still be imaged in thick brain slices treated with AICI. Therefore, AICI is useful not only for the three-dimensional (3D) high-resolution identification of neuronal structures, but also for the examination of multiple structural imaging by neuronal distribution, projection, and gene expression in deep brain tissue. AICI is applicable beyond the imaging of fluorescent antibodies and dyes, and can clear a variety of tissue types, making it broadly useful to researchers for optical imaging applications.  相似文献   
45.
The design and fabrication of solar‐to‐chemical energy conversion devices are enabled through interweaving multiple components with various morphologies and unique functions using a versatile layer‐by‐layer assembly method. Cationic and anionic polyelectrolytes are used as an electrostatic adhesive to assemble the following functional materials: plasmonic Ag nanoparticles for improved light harvesting, upconversion nanoparticles for utilization of near‐infrared light, and polyoxometalate water oxidation catalysts for enhanced catalytic activity. Polyelectrolytes also have an additional function of passivating the surface recombination centers of the underlying photoelectrode. These functional components are precisely assembled on a model photoanode (e.g., Fe2O3 and BiVO4) in a desired order and various combinations without degradation of their intrinsic properties. As a result, the performance of water oxidation photoanodes is synergistically enhanced. This study can enable the design and fabrication of novel solar‐to‐chemical energy conversion devices.  相似文献   
46.
Volume-regulated anion channel (VRAC) is ubiquitously expressed and plays a pivotal role in vertebrate cell volume regulation. A heterologous complex of leucine-rich repeat containing 8A (LRRC8A) and LRRC8B-E constitutes the VRAC, which is involved in various processes such as cell proliferation, migration, differentiation, intercellular communication, and apoptosis. However, the lack of a potent and selective inhibitor of VRAC limits VRAC-related physiological and pathophysiological studies, and most previous VRAC inhibitors strongly blocked the calcium-activated chloride channel, anoctamin 1 (ANO1). In the present study, we performed a cell-based screening for the identification of potent and selective VRAC inhibitors. Screening of 55,000 drug-like small-molecules and subsequent chemical modification revealed 3,3′-((2-hydroxy-3-methoxyphenyl)methylene)bis(4-hydroxy-2H-chromen-2-one) (VI-116), a novel potent inhibitor of VRAC. VI-116 fully inhibited VRAC-mediated I quenching with an IC50 of 1.27 ± 0.18 μM in LN215 cells and potently blocked endogenous VRAC activity in PC3, HT29 and HeLa cells in a dose-dependent manner. Notably, VI-116 had no effect on intracellular calcium signaling up to 10 μM, which completely inhibited VRAC, and showed high selectivity for VRAC compared to ANO1 and ANO2. However, DCPIB, a VRAC inhibitor, significantly affected ATP-induced increases in intracellular calcium levels and Eact-induced ANO1 activation. In addition, VI-116 showed minimal effect on hERG K+ channel activity up to 10 μM. These results indicate that VI-116 is a potent and selective VRAC inhibitor and a useful research tool for pharmacological dissection of VRAC.  相似文献   
47.
Characteristics of supersonic flow are examined with specific regard to nano-particle thin-film coating. Effects of shockwaves, nozzle geometry, chamber pressure, and substrate location were studied computationally. Shockwaves are minimized to reduce fluctuations in flow properties at the discontinuities across diamond shock structures. Nozzle geometry was adjusted to ensure optimal expansion (i.e., P exit = P ambient), where shock formation was significantly reduced and flow kinetic energy maximized. When the ambient pressure was reduced from 1 to 0.01316 bar, the nozzle’s diverging angle must be increased to yield the optimum condition of minimized adversed effects. Beyond some critical distance, substrate location did not seem to be a sensitive parameter on flow characteristics when P amb = 0.01316 bar; however, overly close proximity to the nozzle exit caused flow disturbances inside the nozzle, thereby adversely affecting coating gas flow.  相似文献   
48.
A mathematical model has been developed to predict performance of a continuous entrained-bed and bubbling fluidized-bed hot gas desulfurization system in IGCC. The model combines the particle residence time with the kinetic rate in each reactor. The model has been applied to the KIER’s laboratory scale fluidized bed process. The present model provided a reasonable fit in predicting experimental results that the outlet concentration of H2S from the desulfurizer and SO2 from the regenerator increased nearly proportionally to the inlet concentration of H2S to the desulfurizer. The model also could predict well the outlet concentration of O2 from the regenerator to decrease as the inlet concentration of H2S to the desulfurizer increased. The present model predicted with reasonable accuracy mean diameter of bed particles and sulfur content of particles in desulfurizer and regenerator.  相似文献   
49.
DNA has emerged as a novel material in many areas of materials science due to its programmability. Especially, DNA hydrogels have been studied to incorporate new functions into gels. To date, only a few methods have been developed for fabricating DNA hydrogels, such as the use of complementary sequences or covalent bond. Herein, it is demonstrated that one of the most well‐known plant‐derived polyphenols, tannic acid (TA), can form a DNA hydrogel which is named TNA hydrogel ( T A + D NA ). TA plays a role as a “molecular glue” by a new mode of action reversibly connecting between phosphodiester bonds, which is different from the crosslinking utilizing complementary sequences. TA intrinsically degrades due to ester bonds connecting between pyrogallol groups, causing a degradable DNA hydrogel. Furthermore, TNA gel is multifunctional in that the gel is extensible upon pulling and adhesive to tissues because of the rich polyphenol groups in TA (ten phenols per TA). Unexpectedly, TNA gel exhibits superior in vivo hemostatic ability that can be useful for biomedical applications. This new DNA hydrogel preparation method represents a new technique for fabricating a large amount of DNA‐based hemostatic hydrogel without chemically modifying DNA or requiring the crosslinking by complementary sequences.  相似文献   
50.
The objective of this study was to determine the effects of emulsifier types and concentrations, plus the addition of sucrose and shortening on wheat flour extrudates. Ground extrudate pasting properties were measured in the rapid viscoanalyser (RVA). Four pasting parameters were determined from the RVA curve: peak time (PT), peak viscosity (P), breakdown viscosity (H), and initial slope (IS). Emulsifier types and the addition of sucrose and shortening significantly affected PT, P, H, and IS. Emulsifier concentration significantly influenced PT and H. Emulsifiers significantly increased PT and H and decreased P and IS. Glyceryl monostearate had the greatest effects on these parameters. Sucrose and shortening generally enhanced the effects of emulsifiers on pasting properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号