首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2022篇
  免费   122篇
  国内免费   9篇
电工技术   37篇
综合类   4篇
化学工业   494篇
金属工艺   72篇
机械仪表   105篇
建筑科学   29篇
能源动力   64篇
轻工业   204篇
水利工程   6篇
无线电   383篇
一般工业技术   404篇
冶金工业   131篇
原子能技术   25篇
自动化技术   195篇
  2024年   4篇
  2023年   34篇
  2022年   57篇
  2021年   75篇
  2020年   61篇
  2019年   74篇
  2018年   64篇
  2017年   69篇
  2016年   77篇
  2015年   59篇
  2014年   87篇
  2013年   132篇
  2012年   128篇
  2011年   151篇
  2010年   111篇
  2009年   105篇
  2008年   109篇
  2007年   79篇
  2006年   83篇
  2005年   72篇
  2004年   63篇
  2003年   50篇
  2002年   61篇
  2001年   51篇
  2000年   44篇
  1999年   42篇
  1998年   60篇
  1997年   40篇
  1996年   23篇
  1995年   11篇
  1994年   10篇
  1993年   12篇
  1992年   7篇
  1991年   7篇
  1990年   7篇
  1989年   7篇
  1988年   6篇
  1987年   4篇
  1986年   6篇
  1985年   3篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1976年   3篇
  1973年   1篇
排序方式: 共有2153条查询结果,搜索用时 15 毫秒
991.
Maleic anhydride (MAH) grafted onto ethylene vinyl acetate copolymer (EVA), mEVA (modified EVA) was blended with poly(ethylene glycol‐co‐cyclohexane‐1,4‐dimethanol terephthalate) (PETG) with various mEVA and EVA (unmodified) content in the internal mixer. The effect of reactive compatibilizer to decrease the dispersed particle diameter was observed. The brittle–ductile transition was found at about dn: 0.37 µm and dv: 0.55 µm of particle diameter, a critical particle diameter, regardless of EVA content, and the blend was also toughened at above the critical particle diameter regardless of dispersed EVA content and compatibility. The toughening mechanism and the effect of the particle diameter on the impact strength of the blend were investigated by morphological observation, and it was found that the toughening of the PETG/EVA blend system resulted from the shear deformation, induced by cavitation of dispersed EVA particles. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   
992.
Jeaduk Ryu  Hyungmin Kim  Kihyung Lee   《Fuel》2005,84(18):2341-2350
The purpose of this study was to investigate the spray structure and evaporation characteristics of common rail high pressure injector for use in a direct injection type HCCI (Homogeneous Charge Compression Ignition) engine. In this study, we measured the injection rate and visualized the spray structure of a HCCI injector according to injection conditions. The CFD simulation of the spray and the air fuel mixture formation in real engine conditions was also conducted using the VECTIS commercial code. In addition, we compared simulation results to experimental results.

From the spray experiment and simulation results, we found that the spray penetration was proportional to the back pressure by an exponent of 1/4. This is similar to Hiroyasu's experimental result. The fuel evaporation and air fuel mixture result indicate that the influence of the spray impingement with the ambient density was bigger than that of the intake pressure and temperature conditions in evaporation rate when the fuel was injected at the early stage of the compression stroke. The results also reveal that the fuel was uniformly distributed in the combustion chamber at this early injection time and the air fuel mixture was enhanced in this relatively rich region. However, when ambient density was kept constant, the fuel evaporation was sensitive to the influence of the intake temperature and pressure. As the fuel was injected at the later stage of the compression stroke, the fuel tended to concentrate in the bowl zone and to generate the lean air fuel mixture. From these results, it was confirmed that the air fuel mixture characteristics are sensitive to the impingement position of the injected fuel.  相似文献   

993.
An efficient calibration algorithm for an ambulatory audiometric test system is proposed. This system utilizes a personal digital assistant (PDA) device to generate the correct sound pressure level (SPL) from an audiometric transducer such as an earphone. The calibrated sound intensities for an audio-logical examination can be obtained in terms of the sound pressure levels of pure-tonal sinusoidal signals in eight-banded frequency ranges (250, 500, 1 000, 2 000, 3 000, 4 000, 6 000 and 8 000 Hz), and with mapping of the input sound pressure levels by the weight coefficients that are tuned by the delta learning rule. With this scheme, the sound intensities, which evoke eight-banded sound pressure levels by 5 dB steps from a minimum of 25 dB to a maximum of 80 dB, can be generated without volume displacement. Consequently, these sound intensities can be utilized to accurately determine the hearing threshold of a subject in the ambulatory audiometric testing environment.  相似文献   
994.
Zn–Ti-based sorbents promoted with cobalt and nickel additive were prepared by simple physical mixing of single oxides. Their capacities for removing H2S and NH3 simultaneously, emitted from coal gasifiers, were investigated in a micro-reactor at 1 atm and 650 °C. NH3 within the fuel gases did not affect the sulfur removing capacity of the Zn–Ti-based sorbent. The additives, cobalt and nickel, were found to be active components in NH3 decomposition as well as H2S absorption, while major components such as ZnO and TiO2 did not show any activity in the NH3 decomposition reaction. NH3 was decomposed over both oxide and sulfide forms of the additives, even though the NH3 decomposition ability of their sulfides dramatically decreased in the presence of H2 gas owing to the equilibrium limitation of NH3 decomposition. In the case of oxide forms, cobalt oxide showed excellent NH3 decomposition capacity regardless of H2 concentrations, while the capacity of nickel oxide depended on the H2 concentrations.  相似文献   
995.
In this study, we examined the growth of copper oxide (CuO) photoelectrodes using nickel-doped copper oxide seed layers with various doping concentrations. We investigated the effects of the seed layer doped with various amounts of nickel on the morphological, structural, optical and photoelectrochemical properties of the CuO photoelectrode by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and potentiostat/galvanostat measurements, respectively. We found that doping the seed layer with nickel affects properties such as the surface roughness, surface area, crystallinity and photostability. As a result, we obtained a maximum photostability of 46.2% using a 10 at% nickel-doped seed layer.  相似文献   
996.
In this study, we have demonstrated a simple and inexpensive process to fabricate electrowetting lens arrays with various curvatures (micron to submicron) on conductive and transparent polydimethylsiloxane (PDMS) molds without additional metal layers. The microlens arrays were fabricated using one-step dual diffuser lithography process, which utilizes a pair of diffusers to diffract the incident rays of UV light at wide angles before approaching the photoresist. Dimensional control and high fill factor was achieved by just varying the exposure energy and gap between the patterns in the photomask, respectively. The patterns were replicated in conductive and transparent Ag(n)-PDMS (5–20% Ag) with 15 μm thickness. High conductivity of 4.6 × 10?1 S/m and high transmission efficiency of 90% was demonstrated by Ag(n)-PDMS molds. Micro-nanolens arrays fabricated by the optimized corelation were utilized to demonstrate switchable wettability behavior of water droplet at different applied voltages. The electrowetting microlens array fabrication method introduced in this work has high potential to be incorporated in optoelectronics and biomedical devices.  相似文献   
997.
Isoflavonoids are a characteristic family of natural products in legumes known to mediate a range of plant-biotic interactions. For example, in soybean (Glycine max: Fabaceae) multiple isoflavones are induced and accumulate in leaves following attack by Spodoptera litura (Lepidoptera: Noctuidae) larvae. To quantitatively examine patterns of activated de novo biosynthesis, soybean (Var. Enrei) leaves were treated with a combination of plant defense elicitors present in S. litura gut content extracts and L-α-[13C9, 15N]phenylalanine as a traceable isoflavonoid precursor. Combined treatments promoted significant increases in 13C-labeled isoflavone aglycones (daidzein, formononetin, and genistein), 13C-labeled isoflavone 7-O-glucosides (daidzin, ononin, and genistin), and 13C-labeled isoflavone 7-O-(6″-O-malonyl-β-glucosides) (malonyldaidzin, malonylononin, and malonylgenistin). In contrast levels of 13C-labeled flavones and flavonol (4′,7-dihydroxyflavone, kaempferol, and apigenin) were not significantly altered. Curiously, application of fatty acid-amino acid conjugate (FAC) elicitors present in S. litura gut contents, namely N-linolenoyl-L-glutamine and N-linoleoyl-L-glutamine, both promoted the induced accumulation of isoflavone 7-O-glucosides and isoflavone 7-O-(6″-O-malonyl-β-glucosides), but not isoflavone aglycones in the leaves. These results demonstrate that at least two separate reactions are involved in elicitor-induced soybean leaf responses to the S. litura gut contents: one is the de novo biosynthesis of isoflavone conjugates induced by FACs, and the other is the hydrolysis of the isoflavone conjugates to yield isoflavone aglycones. Gut content extracts alone displayed no hydrolytic activity. The quantitative analysis of isoflavone de novo biosynthesis, with respect to both aglycones and conjugates, affords a useful bioassay system for the discovery of additional plant defense elicitor(s) in S. litura gut contents that specifically promote hydrolysis of isoflavone conjugates.  相似文献   
998.
In this study, we investigated the photoreaction of BrU in a pyrene-labeled DNA duplex, RNA duplex, and DNA/RNA hybrids. We found that the photoreactivity of BrU changed dramatically from hydrogen abstraction to cross-linking by changing the conformation of the duplex from the B-form to the A-form. Among three A-form structures, the largest amount of cross-linked products was observed when BrU was incorporated into the RNA strand and the pyrene was conjugated to the 5′ end of the DNA. These results indicate that the contact manner of pyrene was different between A- and B-form duplexes. This is a rare example of the use of the reactivity of bromouracil to analyze the contact between a small molecule with a weak binding affinity and a nucleic acid.  相似文献   
999.
The effects of compatibilizer and fillers on the mechanical properties and dispersion state of droplets of polypropylene (PP)/polylactide (PLA) blends were investigated. Two blended composite systems, i.e. PP‐rich (80/20) containing microcrystalline cellulose (MCC) modified with silane (m‐MCC) and PLA‐rich (20/80) containing MCC were prepared by melt compounding using a twin‐screw extruder. The structural differences between MCC and m‐MCC were confirmed using Fourier transform infrared spectra. Universal testing machine results revealed that the tensile strength and Young's modulus increased with the addition of compatibilizer and filler, respectively. These results were supported by the reduction of domain size observed by scanning electron microscopy. Differential scanning calorimetric analysis showed a change of the melting and crystallization behavior of blends according to the presence of compatibilizer or filler. An increase of the dynamic storage modulus and a decrease in tan δ with addition of compatibilizer indicated that the interfacial adhesion between PP and PLA improved. © 2019 Society of Chemical Industry  相似文献   
1000.
Light extraction efficiency (LEE) of AlGaN-based nanorod deep ultraviolet (UV) light-emitting diodes (LEDs) is numerically investigated using three-dimensional finite-difference time-domain simulations. LEE of deep UV LEDs is limited by strong light absorption in the p-GaN contact layer and total internal reflection. The nanorod structure is found to be quite effective in increasing LEE of deep UV LEDs especially for the transverse magnetic (TM) mode. In the nanorod LED, strong dependence of LEE on structural parameters such as the diameter of a nanorod and the p-GaN thickness is observed, which can be attributed to the formation of resonant modes inside the nanorod structure. Simulation results show that, when the structural parameters of the nanorod LED are optimized, LEE can be higher than 50% and 60% for the transverse electric (TE) and TM modes, respectively. The nanorod structure is expected to be a good candidate for the application to future high-efficiency deep UV LEDs.

PACS

41.20.Jb; 42.72.Bj; 85.60.Jb  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号