首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   915篇
  免费   35篇
  国内免费   1篇
电工技术   93篇
化学工业   260篇
金属工艺   22篇
机械仪表   17篇
建筑科学   9篇
能源动力   39篇
轻工业   82篇
水利工程   1篇
无线电   60篇
一般工业技术   176篇
冶金工业   121篇
原子能技术   20篇
自动化技术   51篇
  2023年   7篇
  2022年   11篇
  2021年   18篇
  2020年   9篇
  2019年   16篇
  2018年   11篇
  2017年   17篇
  2016年   31篇
  2015年   12篇
  2014年   26篇
  2013年   45篇
  2012年   36篇
  2011年   63篇
  2010年   37篇
  2009年   38篇
  2008年   51篇
  2007年   38篇
  2006年   32篇
  2005年   23篇
  2004年   23篇
  2003年   33篇
  2002年   31篇
  2001年   16篇
  2000年   19篇
  1999年   15篇
  1998年   58篇
  1997年   46篇
  1996年   26篇
  1995年   17篇
  1994年   18篇
  1993年   15篇
  1992年   8篇
  1991年   11篇
  1990年   11篇
  1989年   9篇
  1988年   12篇
  1987年   9篇
  1986年   12篇
  1985年   8篇
  1984年   4篇
  1983年   5篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1978年   6篇
  1977年   1篇
  1976年   4篇
  1973年   1篇
  1972年   1篇
  1967年   1篇
排序方式: 共有951条查询结果,搜索用时 31 毫秒
41.
42.
A novel vinyl ether-type RAFT agent, benzyl 2-(vinyloxy)ethyl carbonotrithioate (BVCT) was synthesized for various block copolymers via the combination of living cationic polymerization of vinyl ethers and reversible addition−fragmentation chain transfer (RAFT) polymerization. The novel BVCT–trifluoroacetic acid adduct play an important role to produce well-defined block copolymers, which is both as a cationogen under EtAlCl2 initiation system in the presence of ethyl acetate for living cationic polymerization and a RAFT agent for blocks by RAFT polymerization. The resulting polymer, poly(vinyl ether)s, by living cationic polymerization had a high number average α-end functionality (≥0.9) as determined by both 1H NMR and MALDI-TOF-MS spectrometry. In addition, this poly(vinyl ether)s worked well as a macromolecular chain transfer agent for RAFT polymerization. The RAFT polymerization of radically polymerizable monomers was conducted in toluene using 2,2′-azobis(isobutyronitrile) at 70 °C. For example, a double thermoresponsive block copolymer (MOVE61-b-NIPAM150) consisting of 2-methoxyethyl vinyl ether (MOVE) and N-isopropylacrylamide (NIPAM) was prepared via the combination of living cationic polymerization and RAFT polymerization. The block copolymer reversibly formed and deformed micellar assemblies above the phase separation temperature (Tps) of poly(NIPAM) block in water. This BVCT is not only functioned as an initiator, but also acted as a monomer. When BVCT was copolymerized with MOVE by living cationic polymerization, followed by graft copolymerization with NIPAM via RAFT polymerization, well-defined graft copolymers (MOVEn-co-BVCTm)-g-NIPAMx (n = 62–73, m = 1–9, x = 19–214) were successfully obtained. However, no micelle formed in water above Tps of poly(NIPAM) graft chain unlike the case of block copolymers.  相似文献   
43.
With the increasing demand of turbochargers with high performance and low turbo lag, high cycle fatigue (HCF) of radial turbine blades has become the most commo...  相似文献   
44.
45.
Steel corrosion under atmospheric conditions is a critical issue in the maintenance of structures such as electric transmission towers and bridges during their long-term operation, which are generally located at many places over a wide area. Since a major factor causing corrosion is airborne salt particles coming from the sea, wide-area distributions of the long-term cumulative amount of sea salt deposited on surfaces are needed. Moreover, since the amount of airborne sea salt varies locally with the topography, it is also important to consider the effects of topography. In this paper, a method combining a computational fluid dynamics model and a statistical procedure is proposed to efficiently estimate wide-area distributions of the cumulative amount of airborne sea salt by considering the local topography. The predicted amount of airborne sea salt decreases with increasing distance from the coast and varies with the topography and the offshore wind. A comparison between predicted and observed amounts revealed that: (1) this method appropriately estimates topographical effects on sea-salt transport and enables the estimation of deposited sea salt on structure surfaces, and (2) consideration of the trapping efficiency of sea-salt particles on structure surfaces improves the prediction accuracy.  相似文献   
46.
Na3Zr2Si2PO12 (NASICON) is a promising material as a solid electrolyte for all‐solid‐state sodium batteries. Nevertheless, one challenge for the application of NASICON in batteries is their high sintering temperature above 1200°C, which can lead to volatilization of light elements and undesirable side reactions with electrode materials at such high temperatures. In this study, liquid‐phase sintering of NASICON with a Na3BO3 (NBO) additive was performed for the first time to lower the NASICON sintering temperature. A dense NASICON‐based ceramic was successfully obtained by sintering at 900°C with 4.8 wt% NBO. This liquid‐phase sintered NASICON ceramic exhibited high total conductivity of ~1 × 10?3 S cm?1 at room temperature and low conduction activation energy of 28 kJ mol?1. Since the room‐temperature conductivity is identical to that of conventional high‐temperature‐sintered NASICON, NBO was demonstrated as a good liquid‐phase sintering additive for NASICON solid electrolyte. In the NASICON with 4.8 wt% NBO ceramic, most of the NASICON grains directly bonded with each other and some submicron sodium borates segregated in particulate form without full penetration to NASICON grain boundaries. This characteristic composite microstructure contributed to the high conductivity of the liquid‐phase sintered NASICON.  相似文献   
47.
The oxygen content of silicon nitride with 1 mol% Y2O3—Nd2O3 additive was measured after firing to determine the compositional change during gas-pressure sintering. Oxygen content decreases from 2.5 to 0.94 wt% during firing for 4 h at 1900°C and 10-MPa pressure in N2. This decrease in oxygen results from the release of SiO gas generated by a thermaldecomposition reaction between Si3N4 and SiO2. The resultant sintered silicon nitride material contains less than 1 wt% oxygen.  相似文献   
48.
A feasible doping strategy is introduced to synthesize Eu2+-doped α-Si3N4 nanowires coated with a thin BN film. The nanowires were characterized by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, and a fluorescence spectrophotometer. The Eu2+-doped α-Si3N4 nanowires emitted strong yellow light, which is related to the 4 f 65 d –4 f 7 transition of Eu2+, upon a broad excitation wavelength range between 250 and 450 nm. The obtained nanowires provided a potential candidate for application in optical nanodevices, as well as in white LEDs.  相似文献   
49.
Silicon-doped diamond-like carbon (Si-DLC) films were prepared by dc pulse-plasma chemical vapor deposition (CVD), using a mixture of acetylene (C2H2) and tetramethylsilane (TMS) as the material gas. The pulse voltage was varied from − 2 to − 5 kV, and the TMS flow ratio (TMS/(C2H2 + TMS)) was varied from 0 to 40%. At a pulse voltage of − 2 kV, an increase in TMS flow ratio leads to a decrease in hardness. In contrast, at a pulse voltage of − 5 kV, an increase in TMS flow ratio leads to a slight increase in hardness. The high hydrogen concentration in the films due to an increase in TMS flow ratio promotes the formation of polymeric sp3 C―H bonds, resulting in the fabrication of soft films at a low pulse voltage of − 2 kV. However, an increase in the effect of ion peening on the growth face results in the formation of hard films at a high pulse voltage of − 5 kV. Then, at a pulse voltage of − 5 kV fabricating hard Si-DLC films, an increase in TMS flow ratio leads to an increase in the silicon content in the films, resulting in a decrease in the friction coefficient. Therefore, it is clarified that Si-DLC films fabricated by dc pulse-plasma CVD under a high pulse voltage and high TMS flow ratio exhibit high hardness and a low friction coefficient. Moreover, to investigate the friction coefficient of Si-DLC films fabricated by dc pulse-plasma CVD, films deposited by dc plasma CVD were also evaluated. To obtain the same low friction coefficient, dc pulse-plasma CVD requires less TMS than dc plasma CVD. Hence, it is also clarified that Si-DLC films can be fabricated at a low cost by dc pulse-plasma CVD.  相似文献   
50.
Metallurgical and Materials Transactions B - Normal spectral emissivity of molten Cu-Fe alloy with different compositions was measured at the wavelength of 807 nm using an electromagnetic...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号