首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103424篇
  免费   1806篇
  国内免费   550篇
电工技术   1103篇
综合类   2349篇
化学工业   15722篇
金属工艺   5359篇
机械仪表   3744篇
建筑科学   2557篇
矿业工程   601篇
能源动力   2532篇
轻工业   4746篇
水利工程   1407篇
石油天然气   432篇
武器工业   1篇
无线电   11799篇
一般工业技术   20504篇
冶金工业   4279篇
原子能技术   431篇
自动化技术   28214篇
  2024年   102篇
  2023年   434篇
  2022年   1022篇
  2021年   1199篇
  2020年   937篇
  2019年   971篇
  2018年   15293篇
  2017年   14053篇
  2016年   10742篇
  2015年   1226篇
  2014年   1103篇
  2013年   1834篇
  2012年   4052篇
  2011年   10399篇
  2010年   9074篇
  2009年   6351篇
  2008年   7483篇
  2007年   8332篇
  2006年   660篇
  2005年   1619篇
  2004年   1427篇
  2003年   1438篇
  2002年   778篇
  2001年   318篇
  2000年   405篇
  1999年   278篇
  1998年   453篇
  1997年   345篇
  1996年   347篇
  1995年   226篇
  1994年   211篇
  1993年   200篇
  1992年   157篇
  1991年   186篇
  1990年   137篇
  1989年   134篇
  1988年   120篇
  1987年   117篇
  1986年   102篇
  1985年   119篇
  1984年   95篇
  1983年   102篇
  1982年   87篇
  1981年   99篇
  1980年   76篇
  1979年   65篇
  1976年   57篇
  1965年   46篇
  1955年   63篇
  1954年   68篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
981.
The article deals with the design and implementation of a flat filter tracking digital controller for a boost dc-dc power converter. A highly perturbed switched boost converter circuit is shown to be efficiently controlled, in a trajectory tracking task for its non-minimum phase output, by means of a suitable linear filter, here addressed as a flat filter. Flat filtering is a natural robust version of generalized proportional integral control (GPIC) by which the effects of arbitrary time varying exogenous disturbances, unknown endogenous nonlinearities and un-modeled dynamics can be jointly attenuated in a conceptually similar fashion to observer-based active disturbance rejection control (ADRC) and algebraic identification based model free control (MFC) but: a) without using extended state observers and b) respecting the original system order in a time-varying simplified model while avoiding algebraic estimation techniques. The proposed control technique based on the TMS320F28335 digital signal processor chip is tested by means of realistic simulations and experimental setup.  相似文献   
982.
Controllers play a critical role in software-defined networking (SDN). However, existing single-controller SDN architectures are vulnerable to single-point failures, where a controller’s capacity can be saturated by flooded flow requests. In addition, due to the complicated interactions between applications and controllers, the flow setup latency is relatively large. To address the above security and performance issues of current SDN controllers, we propose distributed rule store (DRS), a new multi-controller architecture for SDNs. In DRS, the controller caches the flow rules calculated by applications, and distributes these rules to multiple controller instances. Each controller instance holds only a subset of all rules, and periodically checks the consistency of flow rules with each other. Requests from switches are distributed among multiple controllers, in order to mitigate controller capacity saturation attack. At the same time, when rules at one controller are maliciously modified, they can be detected and recovered in time. We implement DRS based on Floodlight and evaluate it with extensive emulation. The results show that DRS can effectively maintain a consistently distributed rule store, and at the same time can achieve a shorter flow setup time and a higher processing throughput, compared with ONOS and Floodlight.  相似文献   
983.
This work describes a neural network based architecture that represents and estimates object motion in videos. This architecture addresses multiple computer vision tasks such as image segmentation, object representation or characterization, motion analysis and tracking. The use of a neural network architecture allows for the simultaneous estimation of global and local motion and the representation of deformable objects. This architecture also avoids the problem of finding corresponding features while tracking moving objects. Due to the parallel nature of neural networks, the architecture has been implemented on GPUs that allows the system to meet a set of requirements such as: time constraints management, robustness, high processing speed and re-configurability. Experiments are presented that demonstrate the validity of our architecture to solve problems of mobile agents tracking and motion analysis.  相似文献   
984.
This paper deals with dense optical flow estimation from the perspective of the trade-off between quality of the estimated flow and computational cost which is required by real-world applications. We propose a fast and robust local method, denoted by eFOLKI, and describe its implementation on GPU. It leads to very high performance even on large image formats such as 4 K (3,840 × 2,160) resolution. In order to assess the interest of eFOLKI, we first present a comparative study with currently available GPU codes, including local and global methods, on a large set of data with ground truth. eFOLKI appears significantly faster while providing quite accurate and highly robust estimated flows. We then show, on four real-time video processing applications based on optical flow, that eFOLKI reaches the requirements both in terms of estimated flows quality and of processing rate.  相似文献   
985.
Two approximations, center-beam approximation and reference digital elevation model (DEM) approximation, are used in synthetic aperture radar (SAR) motion compensation procedures. They usually introduce residual motion compensation errors for airborne single-antenna SAR imaging and SAR interferometry. In this paper, we investigate the effects of residual uncompensated motion errors, which are caused by the above two approximations, on the performance of airborne along-track interferometric SAR (ATI-SAR). The residual uncompensated errors caused by center-beam approximation in the absence and in the presence of elevation errors are derived, respectively. Airborne simulation parameters are used to verify the correctness of the analysis and to show the impacts of residual uncompensated errors on the interferometric phase errors for ATI-SAR. It is shown that the interferometric phase errors caused by the center-beam approximation with an accurate DEM could be neglected, while the interferometric phase errors caused by the center-beam approximation with an inaccurate DEM cannot be neglected when the elevation errors exceed a threshold. This research provides theoretical bases for the error source analysis and signal processing of airborne ATI-SAR.  相似文献   
986.
Some neurons in the brain of freely moving rodents show special firing pattern. The firing of head direction cells (HDCs) and grid cells (GCs) is related to the moving direction and distance, respectively. Thus, it is considered that these cells play an important role in the rodents’ path integration. To provide a bionic approach for the vehicle to achieve path integration, we present a biologically inspired model of path integration based on the firing characteristics of HDCs and GCs. The detailed implementation process of this model is discussed. Besides, the proposed model is realized by simulation, and the path integration performance is analyzed under different conditions. Simulations validate that the proposed model is effective and stable.  相似文献   
987.
Identity-based signature has become an important technique for lightweight authentication as soon as it was proposed in 1984. Thereafter, identity-based signature schemes based on the integer factorization problem and discrete logarithm problem were proposed one after another. Nevertheless, the rapid development of quantum computers makes them insecure. Recently, many efforts have been made to construct identity-based signatures over lattice assumptions against attacks in the quantum era. However, their efficiency is not very satisfactory. In this study, an efficient identity-based signature scheme is presented over the number theory research unit (NTRU) lattice assumption. The new scheme is more efficient than other lattice- and identity-based signature schemes. The new scheme proves to be unforgeable against the adaptively chosen message attack in the random oracle model under the hardness of the γ-shortest vector problem on the NTRU lattice.  相似文献   
988.
Rapid advances in image acquisition and storage technology underline the need for real-time algorithms that are capable of solving large-scale image processing and computer-vision problems. The minimum st cut problem, which is a classical combinatorial optimization problem, is a prominent building block in many vision and imaging algorithms such as video segmentation, co-segmentation, stereo vision, multi-view reconstruction, and surface fitting to name a few. That is why finding a real-time algorithm which optimally solves this problem is of great importance. In this paper, we introduce to computer vision the Hochbaum’s pseudoflow (HPF) algorithm, which optimally solves the minimum st cut problem. We compare the performance of HPF, in terms of execution times and memory utilization, with three leading published algorithms: (1) Goldberg’s and Tarjan’s Push-Relabel; (2) Boykov’s and Kolmogorov’s augmenting paths; and (3) Goldberg’s partial augment-relabel. While the common practice in computer-vision is to use either BK or PRF algorithms for solving the problem, our results demonstrate that, in general, HPF algorithm is more efficient and utilizes less memory than these three algorithms. This strongly suggests that HPF is a great option for many real-time computer-vision problems that require solving the minimum st cut problem.  相似文献   
989.
Gradient vector flow (GVF) is a feature-preserving spatial diffusion of image gradients. It was introduced to overcome the limited capture range in traditional active contour segmentation. However, the original iterative solver for GVF, using Euler’s method, converges very slowly. Thus, many iterations are needed to achieve the desired capture range. Several groups have investigated the use of graphic processing units (GPUs) to accelerate the GVF computation. Still, this does not reduce the number of iterations needed. Multigrid methods, on the other hand, have been shown to provide a much better capture range using considerable less iterations. However, non-GPU implementations of the multigrid method are not as fast as the Euler method when executed on the GPU. In this paper, a novel GPU implementation of a multigrid solver for GVF written in OpenCL is presented. The results show that this implementation converges and provides a better capture range about 2–5 times faster than the conventional iterative GVF solver on the GPU.  相似文献   
990.
We present a preliminary study of buffer overflow vulnerabilities in CUDA software running on GPUs. We show how an attacker can overrun a buffer to corrupt sensitive data or steer the execution flow by overwriting function pointers, e.g., manipulating the virtual table of a C++ object. In view of a potential mass market diffusion of GPU accelerated software this may be a major concern.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号