Objective: This work describes the application of natural plant polysaccharide as pharmaceutical mucoadhesive excipients in delivery systems to reduce the clearance rate through nasal cavity.Methods: Novel natural polysaccharide (Hibiscus rosasinensis)-based mucoadhesive microspheres were prepared by using emulsion crosslinking method for the delivery of rizatriptan benzoate (RB) through nasal route. Mucoadhesive microspheres were characterized for different parameters and nasal clearance of technetium-99m (99mTc)-radiolabeled microspheres was determined by using gamma-scintigraphy.Results: Their Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) studies showed that the drug was stable during preparation of microspheres. Aerodynamic diameter of microspheres was in the range 13.23?±?1.83–33.57?±?3.69?µm. Change in drug and polysaccharide ratio influenced the mucoadhesion, encapsulation efficiency and in-vitro release property. Scintigraphs taken at regular interval indicate that control solution was cleared rapidly from nasal cavity, whereas microspheres showed slower clearance (p?0.005) with half-life of 160?min.Conclusion: Natural polysaccharide-based microspheres achieved extended residence by minimizing effect of mucociliary clearance with opportunity of sustained delivery for longer duration. 相似文献
A compact spark pre-ionized pulser sustainer TE-CO2 laser that can produce an output energy of one joule with an overall efficiency of 12.4% is presented. Optical pulses have
durations of 7.15 μs FWHM. Here, the laser uses all solid-state excitation (ASSE) circuit and the discharge formed between
two uniform field electrodes placed 1.5 cm apart ultimately leads to a discharge volume of 50 cm × 1.5 cm × 1.5 cm 相似文献
Nanotechnology is currently employed as a tool to fight more efficiently against human pathogens. Nanoparticles can be prepared from a variety of materials such as protein, biodegradable polymers and synthetic polymers. Tamarindus indica Linn. or tamarind is one of the most important biodegradable polymer. In the present study, chemically modified polymer of tamarind ‘carboxymethyl tamarind kernel polysaccharide’ (CMTKP) is used for the synthesis of nanoparticulate formulation. Antibacterial activity of CMTKP was analysed which was then enhanced by incorporating a flouroquinolone antibiotic, ciprofloxacin to it. Ciprofloxacin-loaded CMTKP nanoparticles were synthesised via ionotropic gelation technique. Nanosuspension so formed was lyophilised by addition of a cryoprotectant. Nanoparticles obtained were characterised for its particle size, morphology and stability. Interaction studies were confirmed by Fourier transform infrared spectroscopy (FT-IR). Antibacterial activities of ciprofloxacin, CMTKP and ciprofloxacin-loaded CMTKP nanoparticles were tested against two Gram negative and positive bacteria. The antibacterial assay results revealed greatest zone of inhibition by ciprofloxacin-loaded CMTKP nanoparticles in Micrococcus luteus. Toxicity analysis of the prepared formulation was carried out on vero cell lines via resazurin assay which revealed its minimum toxicity. 相似文献
Thermodynamic (energy and exergy) analyses and optimization studies of two-stage transcritical N2O and CO2 cycles, incorporating compressor intercooling, are presented based on cycle simulation employing simultaneous optimization of intercooler pressure and gas cooler pressure. Further, performance comparisons with the basic single-stage cycles are also presented. The N2O cycle exhibits higher cooling COP, lower optimum gas cooler pressure and discharge temperature and higher second law efficiency as compared to an equivalent CO2 cycle. However, two-stage compression with intercooling yields lesser COP improvement for N2O compared to CO2. Based on the cycle simulations, correlations of optimum gas cooler pressure and inter-stage pressure in terms of gas cooler exit temperature and evaporator temperature are obtained. This is expected to be of help as a guideline in optimal design and operation of such systems. 相似文献
Neuropathy target esterase (NTE) is a membrane protein found in human neurons and other cells, including lymphocytes. Binding of certain organophosphorus (OP) compounds to NTE is believed to cause OP-induced delayed neuropathy (OPIDN), a type of paralysis for which there is no effective treatment. Mutations in NTE have also been linked with serious neurological diseases, such as motor neuron disease. This paper describes development of the first nanostructured biosensor interface containing a catalytically active fragment of NTE known as NEST. The biosensor was fabricated using the layer-by-layer assembly approach, by immobilizing a layer of NEST on top of multilayers consisting of a polyelectrolyte (poly-L-lysine) and an enzyme (tyrosinase). The biosensor has a response time on the order of seconds and gives a concentration-dependent decrease in sensor output in response to a known NEST (and NTE) inhibitor. Potential applications of the biosensor include screening OP compounds for NTE inhibition and investigating the enzymology of wild-type and mutant forms of NTE. Although the development of a NEST biosensor was the primary purpose of this study, we found that the approach developed for NEST could also be extended to measure the activity of other esterases involved in neural processes, such as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). On the basis of measured sensitivities, phenyl valerate was the preferred substrate for NEST and BChE, whereas phenyl acetate was better for AChE. 相似文献
Five small molecules, 3-tricyanovinyl-N-alkylcarbazoles (6-10) have been synthesized in a cost-effective way and characterized. The molecules have high thermal stability, good thin film formation ability and are also air stable. The change of alkyl chain length altered the aggregation pattern in the thin film. Their photophysical and electrochemical studies promise a compatible highest occupied molecular orbital - lowest unoccupied molecular orbital energy level to be potentially useful as good electron acceptor materials in heterojunction solar cell in combination with copper(II)phthalocyanine or poly-3-hexylthiophene (P3HT) as donor. Significant photoluminescence quenching of P3HT in P3HT:6-10 blends were observed. 相似文献
In this study, the specialization profiles of eleven countries are compared along two interconnected but distinct dimensions of research, viz. publication output and citation impact in nine subfields of chemistry. The data for comparative analysis were taken from Scientometric Datafiles.1Since raw counts of publications and citations are confounded by the size of the countries and the size of subject fields, cross-national comparison is made, using relative indicators—activity index and attractivity index. The subfields of relative strength and weakness for these countries are identified from the values of these indicators. The similarity structure of specialization profiles of the eleven countries is mapped, using hierarchical cluster analysis and multidimensional scaling. This mapping leads to the representation of chemistry as it is structured by the dynamics of national science policies of these countries. 相似文献
Thin films of YBCO and YBCO:BaZrO3 (BZO) nanocomposite have been deposited using the pulsed laser deposition technique. Substantial increase in critical current density (JC) and pinning force density (Fp) of the nanocomposite thin films was observed. The possible pinning mechanism in YBCO:BZO nanocomposite thin films has been explored and compared with the pinning mechanism in pure YBCO thin film by studying the variation of JC with magnetic field (B) and temperature. In the intermediate field regime (0.1–1 T), JC follows B−α with nearly similar values of α for YBCO and YBCO:BZO nanocomposite thin films indicating similar pinning mechanism in both thin films. The variation of JC with reduced temperature (t=T/TC) has been studied for both the films and it was observed that the mechanism of pinning in both YBCO and YBCO:BZO thin films is similar (δTC pinning). The observed enhanced values of JC and Fp of the nanocomposite thin film is attributed to the presence of BZO nanoparticles, which induces more defects due to lattice mismatch between YBCO and BZO leading to improved flux pinning properties of the nanocomposite thin film. 相似文献
Indium nitride (InN) epilayers have been successfully grown by nitrogen-plasma-assisted molecular beam epitaxy (NPA-MBE) on Si (111) substrates using different buffer layers. Growth of a (0001)-oriented single crystalline wurtzite-InN layer was confirmed by high resolution X-ray diffraction (HRXRD). The Raman studies show the high crystalline quality and the wurtzite lattice structure of InN films on the Si substrate using different buffer layers and the InN/β-Si3N4 double buffer layer achieves minimum FWHM of E2 (high) mode. The energy gap of InN films was determined by optical absorption measurement and found to be in the range of ~ 0.73-0.78 eV with a direct band nature. It is found that a double-buffer technique (InN/β-Si3N4) insures improved crystallinity, smooth surface and good optical properties. 相似文献
High nitrogen steels provide excellent mechanical properties and corrosion resistance but are prone to form precipitates which adversely affect the corrosion resistance and toughness. High nitrogen steel powders currently available in the market are not claimed to be precipitate free. It is critical to avoid these precipitates while retaining nitrogen in the dissolved form to realize the value of these powder alloys. However, retaining high level of dissolved nitrogen in steel powder during melt atomization process is very challenging. Instead, solid-state dissolution of nitrogen into the powder alloy followed by rapid cooling may provide a convenient approach to avoid precipitate formation compared to traditional melt processing. This study presents a solution treatment approach to achieve elevated dissolved nitrogen levels (~ 0.4 wt pct) in Fe–Mn–Cr powder alloy with negligible precipitation of nitrides. The influence of starting material, holding time, temperature and cooling rate on the resulting microstructure is presented. A fully austenite matrix with high dissolved nitrogen content resulted in powders with desired mechanical properties.