首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1582篇
  免费   83篇
  国内免费   3篇
电工技术   20篇
化学工业   403篇
金属工艺   6篇
机械仪表   30篇
建筑科学   68篇
矿业工程   1篇
能源动力   40篇
轻工业   168篇
水利工程   25篇
石油天然气   1篇
无线电   144篇
一般工业技术   299篇
冶金工业   136篇
原子能技术   15篇
自动化技术   312篇
  2024年   1篇
  2023年   13篇
  2022年   98篇
  2021年   100篇
  2020年   60篇
  2019年   51篇
  2018年   61篇
  2017年   43篇
  2016年   66篇
  2015年   47篇
  2014年   63篇
  2013年   95篇
  2012年   94篇
  2011年   123篇
  2010年   78篇
  2009年   84篇
  2008年   86篇
  2007年   79篇
  2006年   59篇
  2005年   55篇
  2004年   46篇
  2003年   31篇
  2002年   27篇
  2001年   22篇
  2000年   13篇
  1999年   18篇
  1998年   32篇
  1997年   27篇
  1996年   15篇
  1995年   5篇
  1994年   7篇
  1993年   8篇
  1992年   8篇
  1990年   2篇
  1989年   6篇
  1988年   6篇
  1987年   2篇
  1986年   6篇
  1985年   8篇
  1984年   5篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1977年   3篇
  1976年   2篇
  1970年   1篇
排序方式: 共有1668条查询结果,搜索用时 15 毫秒
21.
Two‐dimensional (2D) nanostructures are highly attractive for fabricating nanodevices due to their high surface‐to‐volume ratio and good compatibility with device design. In recent years 2D nanostructures of various materials including metal oxides, graphene, metal dichalcogenides, phosphorene, BN and MXenes, have demonstrated significant potential for gas sensors. This review aims to provide the most recent advancements in utilization of various 2D nanomaterials for gas sensing. The common methods for the preparation of 2D nanostructures are briefly summarized first. The focus is then placed on the sensing performances provided by devices integrating 2D nanostructures. Strategies for optimizing the sensing features are also discussed. By combining both the experimental results and the theoretical studies available, structure‐properties correlations are discussed. The conclusion gives some perspectives on the open challenges and future prospects for engineering advanced 2D nanostructures for high‐performance gas sensors devices.  相似文献   
22.
The development of a mechatronic tactile stimulation platform for touch studies is presented. The platform was developed for stimulation of the fingertip using textured surfaces, providing repeatable tangential sliding motion of stimuli with controlled indentation force. Particular requirements were addressed to make the platform suitable for neurophysiological studies in humans with particular reference to electrophysiological measurements, but allowing a variety of other studies too, such as psychophysical, tribological and artificial touch ones. The design of the mechatronic tactile stimulator is detailed, as well as the performance in tracking reference trajectories. Using microneurography, we recorded from human tactile afferents and validated the platform compatibility with the exacting demands of electrophysiological methods, comprising the absence of spurious vibrations and the lack of relevant electromagnetic interference.  相似文献   
23.
Successful spinal cord repair is thought to be promoted with hierarchically structured scaffolds. These should combine aligned porosity with additional linear features on the micrometer scale to guide axons across multiple length scales. Such scaffolds are generated through the carefully controlled directional solidification of an aqueous biopolymer solution, followed by lyophilization. Under specific freezing conditions this yields a highly regular and aligned lamellar architecture. This architecture exhibits uniform ridges of controlled height and width on the lamellar surface. These ridges run parallel to the pore axis, serving as secondary guidance features. The ridges are capable of linearly aligning 62.4% of chick dorsal root ganglia neurites to within ±10° of the ridge direction. Notably, neurites sprouting perpendicular to the ridge are guided into alignment with these microridged features.  相似文献   
24.
The development of new flexible and stretchable sensors addresses the demands of upcoming application fields like internet‐of‐things, soft robotics, and health/structure monitoring. However, finding a reliable and robust power source to operate these devices, particularly in off‐the‐grid, maintenance‐free applications, still poses a great challenge. The exploitation of ubiquitous temperature gradients, as the source of energy, can become a practical solution, since the recent discovery of the outstanding thermoelectric properties of a conductive polymer, poly(3,4‐ethylenedioxythiophene)‐poly(styrenesulfonate) (PEDOT:PSS). Unfortunately the use of PEDOT:PSS is currently constrained by its brittleness and limited processability. Herein, PEDOT:PSS is blended with a commercial elastomeric polyurethane (Lycra), to obtain tough and processable self‐standing films. A remarkable strain‐at‐break of ≈700% is achieved for blends with 90 wt% Lycra, after ethylene glycol treatment, without affecting the Seebeck voltage. For the first time the viability of these novel blends as stretchable self‐powered sensors is demonstrated.  相似文献   
25.
Contact effects in organic thin-film transistors (OTFTs) sensors are here investigated specifically respect to the gate field-induced sensitivity enhancement of more than three orders of magnitude seen in a DHα6T OTFT sensor exposed to 1-butanol vapors. This study shows that such a sensitivity enhancement effect is largely ascribable to changes occurring to the transistor channel resistance. Effects, such as the changes in contact resistance, are seen to influence the low gate voltage regime where the sensitivity is much lower.  相似文献   
26.
27.
Investigation on the behavior of nematic liquid crystals on functionalized polar dielectric crystal substrates is accomplished. Very interesting effects can be observed in maneuvering liquid crystal droplets on the substrate surface, driven by electric fields generated by pyroelectric effect. Reversible drops fragmentation and self‐assembling in different configurations can be achieved. The dynamics of the observed phenomena is studied and the repeatability of the process is full assessed.  相似文献   
28.
The requirement of high‐temperature calcination for titanium dioxide in (solid‐state) dye‐sensitized solar cells (DSSCs) implies challenges with respect to reduced energy consumption and the potential for flexible photovoltaic devices. Moreover, the use of dye molecules increases production costs and leads to problems related with dye bleaching. Therefore, fabrication of dye‐free hybrid solar cells at low temperature is a promising alternative for current DSSC technology. In this work the authors fabricate hierarchically structured titania thin films by combining a polystyrene‐block‐polyethylene oxide template assisted sol–gel synthesis with nano‐imprint lithography at low temperatures. The achieved films are filled with poly(3‐hexylthiophene) to form the active layer of hybrid solar cells. The surface morphology is probed via scanning electron microscopy and atomic force microscopy, and the bulk film morphology is examined with grazing incidence X‐ray scattering. Good light absorption by the active layer is proven by UV–vis spectroscopy. An enhancement in light absorption is observed and ascribed to light scattering in mesoporous titania films with imprinted superstructures. Accordingly a better photovoltaic performance is found for nano‐imprinted solar cells at various angles of light incidence.  相似文献   
29.
The Helicobacter pylori Neutrophil Activating Protein (HP-NAP) is endowed with immunomodulatory properties that make it a potential candidate for anticancer therapeutic applications. By activating cytotoxic Th1 responses, HP-NAP inhibits the growth of bladder cancer and enhances the anti-tumor activity of oncolytic viruses in the treatment of metastatic breast cancer and neuroendocrine tumors. The possibility that HP-NAP exerts its anti-tumor effect also by modulating the activity of innate immune cells has not yet been explored. Taking advantage of the zebrafish model, we examined the therapeutic efficacy of HP-NAP against metastatic human melanoma, limiting the observational window to 9 days post-fertilization, well before the maturation of the adaptive immunity. Human melanoma cells were xenotransplanted into zebrafish embryos and tracked in the presence or absence of HP-NAP. The behavior and phenotype of macrophages and the impact of their drug-induced depletion were analyzed exploiting macrophage-expressed transgenes. HP-NAP administration efficiently inhibited tumor growth and metastasis and this was accompanied by strong recruitment of macrophages with a pro-inflammatory profile at the tumor site. The depletion of macrophages almost completely abrogated the ability of HP-NAP to counteract tumor growth. Our findings highlight the pivotal role of activated macrophages in counteracting melanoma growth and support the notion that HP-NAP might become a new biological therapeutic agent for the treatment of metastatic melanomas.  相似文献   
30.
Defects of the peripheral nervous system are extremely frequent in trauma and surgeries and have high socioeconomic costs. If the direct suture of a lesion is not possible, i.e., nerve gap > 2 cm, it is necessary to use grafts. While the gold standard is the autograft, it has disadvantages related to its harvesting, with an inevitable functional deficit and further morbidity. An alternative to autografting is represented by the acellular nerve allograft (ANA), which avoids disadvantages of autograft harvesting and fresh allograft rejection. In this research, the authors intend to transfer to human nerves a novel technique, previously implemented in animal models, to decellularize nerves. The new method is based on soaking the nerve tissues in decellularizing solutions while associating ultrasounds and freeze–thaw cycles. It is performed without interrupting the sterility chain, so that the new graft may not require post-production γ-ray irradiation, which is suspected to affect the structural and functional quality of tissues. The new method is rapid, safe, and inexpensive if compared with available commercial ANAs. Histology and immunohistochemistry have been adopted to evaluate the new decellularized nerves. The study shows that the new method can be applied to human nerve samples, obtaining similar, and, sometimes better, results compared with the chosen control method, the Hudson technique.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号