首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   519篇
  免费   6篇
  国内免费   3篇
电工技术   5篇
化学工业   57篇
金属工艺   52篇
机械仪表   5篇
建筑科学   3篇
能源动力   13篇
轻工业   23篇
水利工程   1篇
石油天然气   2篇
无线电   56篇
一般工业技术   135篇
冶金工业   68篇
原子能技术   53篇
自动化技术   55篇
  2023年   3篇
  2022年   7篇
  2021年   12篇
  2020年   7篇
  2019年   12篇
  2018年   10篇
  2017年   8篇
  2016年   11篇
  2015年   9篇
  2014年   11篇
  2013年   23篇
  2012年   31篇
  2011年   23篇
  2010年   31篇
  2009年   33篇
  2008年   29篇
  2007年   15篇
  2006年   23篇
  2005年   12篇
  2004年   11篇
  2003年   7篇
  2002年   11篇
  2001年   9篇
  2000年   9篇
  1999年   11篇
  1998年   20篇
  1997年   14篇
  1996年   5篇
  1995年   5篇
  1994年   13篇
  1993年   4篇
  1992年   7篇
  1991年   4篇
  1990年   6篇
  1989年   4篇
  1988年   5篇
  1985年   5篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1981年   5篇
  1979年   6篇
  1977年   7篇
  1976年   6篇
  1975年   5篇
  1973年   4篇
  1972年   5篇
  1969年   3篇
  1968年   3篇
  1967年   2篇
排序方式: 共有528条查询结果,搜索用时 15 毫秒
91.
The objective of the present work is to investigate the effect of various sputtering parameters such as nitrogen flow rate,deposition time and sputtering pressure on structural,wettability and optical properties of titanium oxynitride films deposited on glass substrate by reactive magnetron sputtering.The X-ray diffraction graphs of titanium oxynitride films show evolution of various textures of TiO_xN_y and TiN phases with increasing nitrogen flow rate and deposition time,but an increase in sputtering pressure from 4.0 to 8.0 Pa results in decline of various textures observed for TiO_xN_y and TiN phases.The stress and strain calculated by sin~2Ψ method are compressive,which decrease with increasing nitrogen flow rate from 55 to 100 sccm(standard cubic centimeter per minute) and increase with increasing deposition time from 80 to 140 min due to atomic penning effect and increasing thickness of the deposited films.The titanium oxynitride films have contact angle values above 90 deg.,indicating that films are hydrophobic.The maximum contact angle of 109.1 deg.is observed at deposition time of 140 min.This water repellent property can add value to potential protective,wear and corrosion resistant application of titanium oxynitride films.The band gap decreases from 1.98 to 1.83 eV as nitrogen flow rate is increased from 55 to 100 sccm;it decreases from 1.93 to 1.79 eV as deposition time is increased from 80 to 140 min as more nitrogen incorporation results in higher negative potential of valence band N2p orbital.But it increases from 2.26 to 2.34 eV for titanium oxynitride films as sputtering pressure increases from 4.0 to 8.0 Pa.  相似文献   
92.
Metal matrix composites (MMCs) have a combination of high strength, high stiffness, and low density. The damage behavior of MMCs has been studied extensively by a combination of traditional mechanical testing, microstructural characterization, and post-experiment fractographic analysis. X-ray tomography is an excellent technique that eliminates destructive cross-sectioning, and allows for superior resolution and image quality with minimal sample preparation. In this work, we have carried out a detailed investigation of the damage behavior of SiC particle reinforced 2080 Al alloy matrix composites by X-ray synchrotron tomography. This work is unique, relative to the existing work in the literature, because it: (a) focuses on a technologically relevant MMC system (2080/SiCp), (b) uses a combination of image analysis techniques to enable visualization and damage characterization, and (c) entails a significant amount of quantitative and statistical analyses of particle fracture and void growth in the composite. A statistically significant number of particles and volume of the composite were characterized, enabling a meaningful and realistic interpretation of the results. Based on this, a detailed understanding of the micromechanisms of fracture and the quantitative influence of particle size and aspect ratio were obtained.  相似文献   
93.
Al/SiC nanolaminates possess an excellent combination of mechanical strength and flexibility. While nanoindentation provides a reasonable estimate of the mechanical properties such as Young’s modulus and hardness of these materials, the stress state under nanoindentation is extremely complex. Micropillar compression has become an attractive method of studying the mechanical properties of materials at small length scales in a nominally homogeneous stress state. In this work, micropillars of Al/SiC nanolaminate were fabricated using focused ion beam milling. Compression testing was carried out using a flat-end nanoindenter head. The actual displacement of the pillar during micropillar compression was deconvoluted by subtracting the “extraneous” displacements of the system. Fractographic analysis showed that Al squeezes out between the SiC layers and that a mutual constraint is observed between the hard and soft layers. Numerical finite element modeling was also employed to provide physical insight into the deformation features of the multilayered pillar structure and agreed well with the experimental observations.  相似文献   
94.
Degradation behaviour of sputtered Co–Al coatings on Superni-718 substrate has been investigated. Cyclic high temperature oxidation tests were conducted on uncoated and coated samples at peak temperatures of 900 °C for up to 100 thermal cycles between the peak and room temperatures. The results showed that a dense scale formed on the coated samples during thermal cycling at the peak temperature of 900 °C. The external scale exhibited good spallation resistance during cyclic oxidation testing at both temperatures. The improvement in oxide scale spallation resistance is believed to be related to the fine-grained structure of the coating. Nanostructured Co–Al coatings on Superni-718 substrate were deposited by DC/RF magnetron sputtering. FE-SEM/EDS, AFM, and XRD were used to characterize the morphology and formation of different phases in the coatings, respectively. The Co–Al coating on superalloy substrate showed better performance of cyclic high temperature oxidation resistance due to its possession of β-CoAl phase as Al reservoir and the formation of Al2O3 and spinel phases such as CoCr2O4 and CoAl2O4 in scale. The oxidation results confirmed an improved oxidation resistance of the Co–Al coating on superalloy as compare to bare substrate in air at 900 °C temperature up to 100 cycles.  相似文献   
95.
The macroscopic behavior of metallic materials is a complex function of microstructure. The size, morphology, volume fraction, crystallography, and distribution of a 2nd phase within a surrounding matrix all control the mechanical properties. Understanding the contributions of the individual microconstituents to the mechanical behavior of multiphase materials has proven difficult due to the inability to obtain accurate constitutive relationships of each individual constituent. In dual-phase steels, for example, the properties of martensite or ferrite in bulk form are not representative of their behavior at the microscale. In this study, micropillar compression was employed to determine the mechanical properties of individual microconstituents in metallic materials with “composite” microstructures, consisting of two distinct microconstituents: (I) a Mg–Al alloy with pure Mg dendrites and eutectic regions and (II) a powder metallurgy steel with ferrite and martensite constituents. The approach is first demonstrated in a Mg–Al directionally solidified alloy where the representative stress–strain behavior of the matrix and eutectic phases was obtained. The work is then extended to a dual-phase steel where the constitutive behavior of the ferrite and martensite were obtained. Here, the results were also incorporated into a modified rule-of-mixtures approach to predict the composite behavior of the steel. The constitutive behavior of the ferrite and martensite phases developed from micropillar compression was coupled with existing strength–porosity models from the literature to predict the ultimate tensile strength of the steel. Direct comparisons of the predictions with tensile tests of the bulk dual-phase steel were conducted and the correlations were quite good.  相似文献   
96.
Composite laminates on the nanoscale have unique properties, such as high strength, high wear resistance, and biocompatibility. In this paper we report on the nanoindentation behavior of a model metal–ceramic nanolaminate consisting of alternating layers of aluminum and silicon carbide (Al/SiC) processed by PVD on a Si substrate. Composites with different layer thicknesses were fabricated and the effect of layer thickness on Young’s modulus and hardness was quantified. The effect of indentation depth on modulus and hardness was studied. The damage that took place during nanoindentation was examined by cross-sectioning the samples by focused ion beam (FIB) technique and imaging the surface using scanning electron microscopy (SEM). Finite element modeling (FEM) of nanoindentation of nanolaminates was conducted. The damage patterns observed in experiments were qualitatively supported by the numerical simulations.  相似文献   
97.
Kwamegi (semidried raw Pacific saury) is traditional seafood available in Korea. It has water activity in the range of 0.90 to 0.95. Spoilage and the growth of most pathogenic bacteria is retarded because of low water activity, low temperature, and packaging. However, it is contaminated with bacteria of public health significance and poses a hazard to the consumer because it is consumed raw without any cooking. The effectiveness of these hurdles in preventing the growth of Staphylococcus aureus, Bacillus cereus, Salmonella Typhimurium, and Escherichia coli and the efficacy of irradiation treatment in eliminating these bacteria from kwamegi using inoculated pack studies was examined. Radiation sensitivity of S. aureus, B. cereus, Salmonella Typhimurium, and E. coli in kwamegi was investigated. D10-values of these organisms in kwamegi were 590 +/- 13.6, 640 +/- 14.9, 560 +/- 45.4, and 550 +/- 8.6 Gy, respectively. The growth of all four test organisms inoculated into these foods during 4 weeks of storage at an ambient winter temperature (ranging from -5 degrees C to +5 degrees C) was recorded. All four pathogens (inoculated at 10(6) CFU/g) were eliminated by irradiation at 4 kGy. These studies unequivocally demonstrate that irradiation, with a combination of low water activity and low temperature, results in microbiologically safe kwamegi.  相似文献   
98.
Hafnium nitride (HfN) is a refractory compound considered to be a suitable material for reaction barriers. The present paper deals with the preparation of HfN thin films by reactive magnetron sputtering on high density (HD) graphite and niobium substrates. Deposition process parameters have been optimised with Si(100) substrate in order to get HfN coating of 3 μm thickness. The optimised parameters were used to deposit HfN on HD graphite and on niobium substrates. The results showed that HfN coating with a thickness of 2.8 μm was successfully deposited on HD graphite and niobium substrates. The presence of HfN was confirmed by glancing incidence X-ray diffraction (GIXRD) and X-ray photoelectron spectroscopy (XPS). XRD studies on HfN coating on Si(100), HD graphite and Nb substrates showed nanocrystalline grains of size 130, 55 and 46 Å, respectively. The surface morphology of HfN coating on HD graphite and niobium by atomic force microscope (AFM) and scanning electron microscope (SEM) showed that nanoparticles are getting agglomerated into clusters. The HfN coating on niobium substrate exhibited good adhesion compared to that on HD graphite as studied by microscratch test. The thermal stress generated in the sputter deposited HfN coating on HD graphite and niobium substrates were calculated by analytical formula for thermal stress. The tensile and highly compressive stresses observed in the HfN coating on niobium and HD graphite, respectively, indicated a lower adhesive strength of the coating on the later than that of the former.  相似文献   
99.
Bio-telemetry is an advanced area of research that enables the transmission of biomedical parameters from human body to external monitoring device. Wearable antennas showing robust performance are attaining attention for RF bio-telemetry. A square ring-shaped ground antenna with a truncated patch is investigated for dual mode, on-body and off-body communication. The proposed antenna structure is analysed and optimised on a multi-layered flat tissue phantom. Proposed design resonates at 2.6 GHz with |S11| ?22 dB and at 5.2 GHz with |S11| ?35 dB on the phantom gel. Wide bandwidth of 520 MHz (2.33–2.85 GHz) and 620 MHz (4.78–5.4 GHz) efficiently covers ISM, LTE and WLAN bands and enables the antenna to withstand frequency detuning due to different body postures. Antenna shows maximum radiation efficiency of 15% at 2.45 GHz band when placed close to the tissue. Low specific absorption rate (SAR) value of 0.459/0.523/0.303 W/Kg at 2.45/2.6/5.2 GHz ensures the tissue safety.  相似文献   
100.
The reliability of Pb-free solder joints is controlled by their microstructural constituents. Therefore, knowledge of the solder microconstituents’ mechanical properties as a function of temperature is required. Sn-Ag-Cu lead-free solder alloy contains three phases: a Sn-rich phase, and the intermetallic compounds (IMCs) Cu6Sn5 and Ag3Sn. Typically, the Sn-rich phase is surrounded by a eutectic mixture of β-Sn, Cu6Sn5, and Ag3Sn. In this paper, we report on the Young’s modulus and hardness of the Cu6Sn5 and Cu3Sn IMCs, the β-Sn phase, and the eutectic compound, as measured by nanoindentation at elevated temperatures. For both the β-Sn phase and the eutectic compound, the hardness and Young’s modulus exhibited strong temperature dependence. In the case of the intermetallics, this temperature dependence is observed for Cu6Sn5, but the mechanical properties of Cu3Sn are more stable up to 200°C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号