首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   245篇
  免费   19篇
电工技术   3篇
化学工业   76篇
金属工艺   2篇
机械仪表   6篇
建筑科学   2篇
能源动力   16篇
轻工业   43篇
水利工程   2篇
无线电   28篇
一般工业技术   46篇
冶金工业   10篇
自动化技术   30篇
  2024年   2篇
  2023年   1篇
  2022年   6篇
  2021年   4篇
  2020年   4篇
  2019年   7篇
  2018年   11篇
  2017年   11篇
  2016年   11篇
  2015年   8篇
  2014年   19篇
  2013年   18篇
  2012年   25篇
  2011年   19篇
  2010年   26篇
  2009年   9篇
  2008年   10篇
  2007年   9篇
  2006年   5篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   5篇
  2000年   12篇
  1999年   2篇
  1998年   8篇
  1997年   5篇
  1996年   6篇
  1995年   2篇
  1992年   2篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
排序方式: 共有264条查询结果,搜索用时 15 毫秒
61.
The indentation behavior (Vickers) of Single-crystal MgO was studied as a function of temperature (20° to 1000°C). Indentations were made on the {110} plane, with the indents oriented such that one indent diagonal was parallel to the 〈001〉 direction. Using etchant techniques, the dislocation etch pit structures were examined both in the plane of the indentation and in cross section. All the observed slip traces were found to be consistent with primary slip ({110}〈 1 10〉), with no evidence of secondary slip, even at 1000°C. Radial cracking was observed only at the pair of indent corners joined by the indent diagonal parallel to 〈001〉. The crack length increased with temperature ( T ) for indentations conducted at T < 800°C. For indents made at 800°C or higher, however, no cracking occurred. These results are discussed both with respect to an existing slip-induced crack nucleation model, and the change in crack driving force and toughness with indentation temperature.  相似文献   
62.
Enzymatic water‐extraction of oil and proteins from rice bran was studied in a laboratory‐scale set‐up. The effects of the following enzymes – Celluclast 1.5L, hemicellulase, Pectinex Ultra SP‐L, Viscozyme L, Alcalase 0.6L and papain – on oil and protein extraction yields, and the level of reducing sugars in the extract were investigated. The results showed that Alcalase was most effective in enhancing oil and protein extraction yields. Papain was found to be superior to all carbohydrase enzymes but it gave lower yields than Alcalase. Celluclast 1.5L, hemicellulase, Pectinex Ultra SP‐L and Viscozyme L did not affect yields significantly but increased the level of reducing sugars in the extract. © 2002 Society of Chemical Industry  相似文献   
63.
Sunflower oil‐based HBTPU/Ag and LTPU/Ag nanocomposites have been prepared by in situ catalytic reduction of a silver salt. The virgin polymer and their nanocomposites are soluble in various polar organic solvents and amenable for both solution‐casting and hot pressing. XRD, TEM, and UV spectroscopic analyses ascertained well‐dispersed, narrow‐sized Ag nanoparticles. Tensile testing, dynamic mechanical, thermogravimetric, and DSC analyses showed desirable mechanical and thermal features with improvement upon incorporation of Ag nanoparticles and the presence of a hyperbranched component in the nanocomposites. RSM has been used to evaluate the catalytic efficacy of the nanocomposites.

  相似文献   

64.
Exhaustion of fossil fuels, tremendous increase of materials demand, and unpredictable prices of petroleum based products urge upon the sustainable development. Three different epoxy resins have been synthesized from monoglyceride of Mesua ferrea L. seed oil and epichlorohydrin with and without other dihydroxy compound like tetrabromobisphenol‐A (TBPA) and bisphenol‐A (BPA). The synthesized epoxy resin were characterized by measurement of physical properties like epoxy equivalent, viscosity, hydroxyl value, saponification value, acid value, etc., and spectroscopic techniques like FTIR and 1H NMR. High thermostability with initial decompositions temperature of 225–265°C was observed for the cured resins and 75 mol % BPA based resin exhibits the highest thermostability. Newtonian flow behavior was observed for all resins as indicated by the rheometric study (CVO 100). The flame retardency rating of TBPA based epoxy was found to be V1 as tested by UL 94. The performance characteristics as coating materials were studied by the measurement of gloss, impact resistance, scratch hardness, tensile strength, elongation at break, adhesive strength, and chemical resistance. The results indicate the suitability of the synthesized resins as coating materials. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   
65.
The unison of nanotechnology and polymer science enables the development of novel silver-based polyester nanocomposite as an antimicrobial coating material. Highly branched polyester/clay silver nanocomposites based on vegetable oil with different loadings of silver were prepared via reduction of silver salt by employing dimethylformamide as solvent as well as reducing agent at room temperature. Organically modified montmorillonite clay of 2.5 wt% was used as the nanofiller for the property improvement of the pristine polymer. The highly branched polyester resin was synthesized by condensation of 2,2-bis(hydroxymethyl) propionic acid with Mesua ferrea L. seed oil based carboxyl terminated pre-polymer, as reported earlier. FTIR, UV–vis, XRD, SEM and TEM studies substantiate the formation of well-dispersed silver nanoparticles within the clay gallery with an average size of 15 nm. The thermostability of the silver nanocomposites obtained by thermogravimetric analysis was enhanced by 20 °C. The mechanical properties such as tensile strength and scratch hardness were improved 4.5 and 2.6 units respectively and impact resistance improved a little by nanocomposites formation. The antimicrobial efficacy of the as-prepared silver nanocomposites was also premeditated and highly antibacterial activity against Gram negative bacteria (Escherichia coli and Psuedomonas aeruginosa) was observed. Excellent chemical resistance in various chemical media except in alkali has also been noticed. The study reveals that the polyester/clay silver nanocomposites based on vegetable oil show the potential to be applicable as antibacterial surface coating materials.  相似文献   
66.
Representative volume element (RVE) has commonly been used to predict the stiffness of undamaged composite materials using finite element analysis (FEA). However, never has been an independently measured true microstructural damage quantity used in FEA to predict composite stiffness. Hence, in this work, measured fiber crack density in unidirectional fiber composite (generated using controlled fatigue loading) was used to predict reduction in stiffness using a RVE. It was found that the stiffness changes with change in depth of the volume element along the fiber direction and asymptotically reaches a constant value beyond a critical length called representative depth. It was argued that this representative depth should be more than the minimum of two characteristic length scales, twice of ineffective length and average length of broken fibers. Effective stiffness obtained from FEA of the optimum-sized RVE was in excellent agreement with the experimental results for given microstructural damage state.  相似文献   
67.
Enzymatic process for extracting oil and protein from rice bran   总被引:16,自引:0,他引:16  
Enzymatic extraction of oil and protein from rice bran, using a commercial protease (Alcalase), was investigated and evaluated by response surface methodology. The effect of enzyme concentration was most significant on oil and protein extraction yields, whereas incubation time and temperature had no significant effect. The maximal extraction yields of oil and protein were 79 and 68%, respectively. Further, the quality of oil recovered from the process in terms of free fatty acid, iodine value, and saponification value was comparable with solvent-extracted oil and commercial rice bran oil, but the peroxide value was higher.  相似文献   
68.
This study proposes to incorporate an antifungal agent (potassium sorbate, KS) to post-consumer recycled polyethylene terephthalate (PCRPET), by adding KS to the dip solution through which PCRPET normally passes after extrusion, in order to acquire a non-stick silicone coating, which prevents individual packages from adhering to each other while stacked. This method of imparting antifungal activity to the packaging is far more advantageous than adding KS to the extruder feed because it results in virtually no alterations to the colour and mechanical properties of PCRPET, which is a major issue when KS is added to the extruder feed. The antifungal efficacy of the active packaging was demonstrated against Botrytis cinerea growth by a novel method which mimics the action of the antifungal agent under fruit contact conditions. A reduction by 2 log cycles was observed when the initial concentration of the mould was 105 conidia/mL. The active packaging was effective over a test period lasting 6 months. The packaging microstructure was visualized by scanning electron microscopy (SEM); its thermal properties were characterized using a differential scanning calorimeter (DSC); its optical properties were characterized using CIE Lab colorimetry; and its mechanical properties were characterized by measuring resistance to dynamic compression. The mechanical properties showed no significant difference (P?>?0.05) with those of the control (PCRPET without KS), and despite a statistically significant difference (P?<?0.05) in the colour parameters (L*, a* and b*), the total colour difference (ΔE*) was found to be too small to be visually noticed. This study achieved the aim of adding antifungal activity to PCRPET packaging with little or no perceptible changes to its mechanical, thermal and optical properties and virtually no changes being made to the standard high-speed packaging production line.  相似文献   
69.
Flexible polypyrrole nanosheets (thickness ∼150 nm) grown at the air–liquid interface have been investigated for charge transport and NH3 sensing application. Polypyrrole nanosheets films exhibited a uniform and dense morphology. Temperature dependent charge transport measurements revealed that the PPy films obey Mott's 3-D variable range hopping mechanism. The mobility values calculated using temperature dependent current voltage characteristics indicated them to obey Arrhenius behaviour. These films exhibited a reversible response towards NH3 at room temperature. The sensor exhibited a sensitivity of ∼12% with a typical response and recovery times of 240 s and 50 min, respectively towards 50 ppm of NH3. Raman studies indicated that there is an increase in the antisymmetrical C–N stretching upon exposure to higher concentration of NH3 (500 ppm) and could be assigned to the interaction of NH3 with the carbon backbone of PPy film. Our results clearly emphasize that these flexible PPy films could be used to realize flexible sensors.  相似文献   
70.
Thick films of nanocomposites made of poly(methyl methacrylate) matrix and colloidal anatase TiO2 nanorods fillers were prepared by solvent mixing and solution drop casting. Different concentrations of nanorods were tested in order to examine the influence of the nanoscale fillers on the composites material properties and structure. The thermal properties of the samples were investigated through thermogravimetric analysis, which showed an increase in thermal stability of the nanocomposites on increasing nanorods concentration, for the range of concentrations used. The viscoelastic properties were investigated through dynamic mechanical analysis, which showed an increase in both the storage and loss modulus on increasing nanorods concentration. The in-depth distribution of the TiO2 nanorods in the matrix was evaluated through cross-sectional transmission electron microscopy, which pointed out a uniform dispersion of mesoscale nanorods agglomerates with increasing diameter of 100–200 nm range on increasing nanorods concentration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号