首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   2篇
化学工业   8篇
建筑科学   1篇
能源动力   2篇
轻工业   2篇
无线电   15篇
一般工业技术   13篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2013年   6篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   4篇
  2007年   4篇
  2006年   1篇
  2005年   6篇
  2004年   2篇
  2003年   2篇
  2001年   2篇
排序方式: 共有41条查询结果,搜索用时 0 毫秒
21.
Iterative boundary method for diffuse optical tomography   总被引:1,自引:0,他引:1  
The recent application of tomographic methods to three-dimensional imaging through tissue by use of light often requires modeling of geometrically complex diffuse-nondiffuse boundaries at the tissue-air interface. We have recently investigated analytical methods to model complex boundaries by means of the Kirchhoff approximation. We generalize this approach using an analytical approximation, the N-order diffuse-reflection boundary method, which considers higher orders of interaction between surface elements in an iterative manner. We present the general performance of the method and demonstrate that it can improve the accuracy in modeling complex boundaries compared with the Kirchhoff approximation in the cases of small diffuse volumes or low absorption. Our observations are also contrasted with exact solutions. We furthermore investigate optimal implementation parameters and show that a second-order approximation is appropriate for most in vivo investigations.  相似文献   
22.
While the mathematics, physics, and technology behind magnetic resonance (MR) and fluorescence image formation are distinctively different, the two modalities have significant complementary features to impart strong preclinical and clinical application synergies. Traditionally, hybrid MR and fluorescence imaging implied the use of a system where optical and MR signals can be concurrently acquired. In this case, the common geometry allows for the superposition of fluorescence images of cellular and subcellular processes onto anatomical and functional MR images. More recently, a different hybrid imaging paradigm is strongly evolving by utilizing hybrid MR-fluorescence nanoparticles. This approach offers a second paradigm of hybrid visualization where the common underlying contrast enables the coregistration of MR and fluorescence images acquired under different geometries. We review herein progress with the evolving field of multimodality MR and fluorescence imaging and discuss how these strategies offer a highly promising outlook in established and in novel preclinical and clinical applications.  相似文献   
23.
Macroscopic optical imaging has rather humble technical origins; it has been mostly implemented by photographic means using appropriate filters, a light source and a camera yielding images of tissues. This approach relates to human vision and perception, and is simple to implement and use. Therefore, it has found wide acceptance, especially in recording fluorescence and bioluminescence signals. Yet, the difficulty in resolving depth and the dependence of the light intensity recorded on tissue optical properties may compromise the accuracy of the approach. Recently, optical technology has seen significant advances that bring a new performance level in optical investigations. Quantitative real-time multi-spectral optical and optoacoustic (photoacoustic) methods enable high-resolution quantitative imaging of tissue and disease biomarkers and can significantly enhance medical vision in diagnostic or interventional procedures such as dermatology, endoscopy, surgery, and various vascular and intravascular imaging applications. This performance is showcased herein and examples are given to illustrate how it is possible to shift the paradigm of optical clinical translation.  相似文献   
24.

Background  

Although the mechanisms of airborne particulate matter (PM) related health effects remain incompletely understood, one emerging hypothesis is that these adverse effects derive from oxidative stress, initiated by the formation of reactive oxygen species (ROS) within affected cells. Typically, ROS are formed in cells through the reduction of oxygen by biological reducing agents, with the catalytic assistance of electron transfer enzymes and redox active chemical species such as redox active organic chemicals and metals. The purpose of this study was to relate the electron transfer ability, or redox activity, of the PM samples to their content in polycyclic aromatic hydrocarbons and various inorganic species. The redox activity of the samples has been shown to correlate with the induction of the stress protein, hemeoxygenase-1.  相似文献   
25.
Three light-duty passenger vehicles were tested in five configurations in a chassis dynamometer study to determine the chemical and oxidative potential of the particulate exhaust emissions. The first vehicle was a diesel Honda with a three-stage oxidation system. Its main catalyst was replaced with a diesel particulate filter (DPF) and tested as a second configuration. The second vehicle was a gasoline-fuelled Toyota Corolla with a three-way catalytic converter. The last vehicle was an older Volkswagen Golf, tested using petro-diesel in its original configuration, and biodiesel with an oxidation catalyst as an alternative configuration. Particulate matter (PM) was collected on filters and subsequently analyzed using various chemical and toxicological assays. The production of reactive oxygen species (ROS), quantified by the dithiothreitol (DTT) and macrophage-ROS assays, was used to measure the PM-induced oxidative potential. The results showed that the Golf vehicle in both configurations had the highest emissions of organic species (PAHs, hopanes, steranes, and organic acids). The DPF-equipped diesel Accord car emitted PM with the lowest amounts of organic species and the lowest oxidative potential. Correlation analyses showed that soluble Fe is strongly associated with particulate ROS activity (R = 0.99), while PAHs and hopanes were highly associated with DTT consumption rates (R = 0.94 and 0.91, respectively). In particular, tracers of lube oil emissions, namely Zn, P, Ca, and hopanes, were strongly correlated with distance-based DTT consumption rates (R = 0.96, 0.92, 0.83, and 0.91, respectively), suggesting that incomplete combustion of lube oil might be important driving factors of the overall PM-induced oxidative stress.  相似文献   
26.
Noncontact optical measurements from diffuse media could facilitate the use of large detector arrays at multiple angles that are well suited for diffuse optical tomography applications. Such imaging strategy could eliminate the need for individual fibers in contact with tissue, restricted geometries, and matching fluids. Thus, it could significantly improve experimental procedures and enhance our ability to visualize functional and molecular processes in vivo. In this paper, we describe the experimental implementation of this novel concept and demonstrate capacity to perform small animal imaging.  相似文献   
27.
Nanomaterials are of enormous value for biomedical applications because of their customizable features. However, the material properties of nanomaterials can be altered substantially by interactions with tissue thus making it important to assess them in the specific biological context to understand and tailor their effects. Here, a genetically controlled system is optimized for cellular uptake of superparamagnetic ferritin and subsequent trafficking to lysosomes. High local concentrations of photoabsorbing magnetoferritin give robust contrast in optoacoustic imaging and allow for selective photoablation of cells overexpressing ferritin receptors. Genetically controlled uptake of the biomagnetic nanoparticles also strongly enhances third‐harmonic generation due to the change of refractive index caused by the magnetite–protein interface of ferritins entrapped in lysosomes. Selective uptake of magnetoferritin furthermore enables sensitive detection of receptor‐expressing cells by magnetic resonance imaging, as well as efficient magnetic cell sorting and manipulation. Surprisingly, a substantial increase in the blocking temperature of lysosomally entrapped magnetoferritin is observed, which allows for specific ablation of genetically defined cell populations by local magnetic hyperthermia. The subcellular confinement of superparamagnetic ferritins thus enhances their physical properties to empower genetically controlled interrogation of cellular processes with deep tissue penetration.  相似文献   
28.
A statistical approach to inverting the Born ratio   总被引:1,自引:0,他引:1  
We examine the problem of fluorescence molecular tomography using the normalized Born approximation, termed herein the Born ratio, from a statistical perspective. Experimentally verified noise models for received signals at the excitation and emission wavelengths are combined to generate a stochastic model for the Born ratio. This model is then utilized within a maximum likelihood framework to obtain an inverse solution based on a fixed point iteration. Results are presented for three experimental scenarios: phantom data with a homogeneous background, phantoms implanted within a small animal, and in vivo data using an exogenous probe.  相似文献   
29.
Diffuse optical tomography of highly heterogeneous media   总被引:2,自引:0,他引:2  
We investigate the performance of diffuse optical tomography to image highly heterogeneous media, such as breast tissue, as a function of background heterogeneity. To model the background heterogeneity, we have employed the functional information derived from Gadolinium-enhanced magnetic resonance images of the breast. We demonstrate that overall image quality and quantification accuracy worsens as the background heterogeneity increases. Furthermore we confirm the appearance of characteristic artifacts at the boundaries that scale with background heterogeneity. These artifacts are very similar to the ones seen in clinical examinations and can be misinterpreted as actual objects if not accounted for. To eliminate the artifacts and improve the overall image reconstruction, we apply a data-correction algorithm that yields superior reconstruction results and is virtually independent of the degree of the background heterogeneity.  相似文献   
30.
Early and comprehensive endoscopic detection of colonic dysplasia—the most clinically significant precursor lesion to colorectal adenocarcinoma—provides an opportunity for timely, minimally invasive intervention to prevent malignant transformation. Here, the development and evaluation of biodegradable near‐infrared fluorescent silica nanoparticles (FSN) that have the potential to improve adenoma detection during fluorescence‐assisted white‐light colonoscopic surveillance in rodent and human‐scale models of colorectal carcinogenesis is described. FSNs are biodegradable (t1/2 of 2.7 weeks), well‐tolerated, and enable detection and delineation of adenomas as small as 0.5 mm2 with high tumor‐to‐background ratios. Furthermore, in the human scale, APC1311/+ porcine model, the clinical feasibility and benefit of using FSN‐guided detection of colorectal adenomas using video‐rate fluorescence‐assisted white‐light endoscopy is demonstrated. Since nanoparticles of similar size (e.g., 100–150 nm) or composition (i.e., silica and silica/gold hybrid) have already been successfully translated to the clinic, and clinical fluorescent/white‐light endoscopy systems are becoming more readily available, there is a viable path towards clinical translation of the proposed strategy for early colorectal cancer detection and prevention in high‐risk patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号