首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   947篇
  免费   69篇
  国内免费   5篇
电工技术   9篇
化学工业   263篇
金属工艺   31篇
机械仪表   25篇
建筑科学   19篇
矿业工程   1篇
能源动力   25篇
轻工业   16篇
石油天然气   7篇
无线电   94篇
一般工业技术   310篇
冶金工业   90篇
原子能技术   11篇
自动化技术   120篇
  2024年   1篇
  2023年   17篇
  2022年   37篇
  2021年   50篇
  2020年   20篇
  2019年   38篇
  2018年   38篇
  2017年   33篇
  2016年   45篇
  2015年   36篇
  2014年   34篇
  2013年   57篇
  2012年   71篇
  2011年   75篇
  2010年   45篇
  2009年   57篇
  2008年   51篇
  2007年   46篇
  2006年   51篇
  2005年   38篇
  2004年   29篇
  2003年   28篇
  2002年   25篇
  2001年   10篇
  2000年   10篇
  1999年   8篇
  1998年   7篇
  1997年   10篇
  1996年   9篇
  1995年   6篇
  1994年   7篇
  1993年   4篇
  1992年   3篇
  1991年   4篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1983年   3篇
  1982年   3篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1974年   1篇
  1971年   1篇
  1970年   1篇
  1956年   1篇
  1954年   2篇
排序方式: 共有1021条查询结果,搜索用时 15 毫秒
131.
As the most promising lead‐free branch, tin halide perovskites suffer from the severe oxidation from Sn2+ to Sn4+, which results in the unsatisfactory conversion efficiency far from what they deserve. In this work, by facile incorporation of methylammonium bromide in composition engineering, formamidinium and methylammonium mixed cations tin halide perovskite films with ultrahighly oriented crystallization are synthesized with the preferential facet of (001), and that oxidation is suppressed with obviously declined trap density. MA+ ions are responsible for that impressive orientation while Br ions account for their bandgap modulation. Depending on high quality of the optimal MA0.25FA0.75SnI2.75Br0.25 perovskite films, their device conversion efficiency surges to 9.31% in contrast to 5.02% of the control formamidinium tin triiodide perovskite (FASnI3) device, along with almost eliminated hysteresis. That also results in the outstanding device stability, maintaining above 80% of the initial efficiency after 300 h of light soaking while the control FASnI3 device fails within 120 h. This paper definitely paves a facile and effective way to develop high‐efficiency tin halide perovskites solar cells, optoelectronic devices, and beyond.  相似文献   
132.
The rapid development of ultrahigh‐capacity alloying or conversion‐type anodes in rechargeable lithium (Li)‐ion batteries calls for matching cathodes for next‐generation energy storage devices. The high volumetric and gravimetric capacities, low cost, and abundance of iron (Fe) make conversion‐type iron fluoride (FeF2 and FeF3)‐based cathodes extremely promising candidates for high specific energy cells. Here, the substantial boost in the capacity of FeF2 achieved with the addition of NiF2 is reported. A systematic study of a series of FeF2–NiF2 solid solution cathodes with precisely controlled morphology and composition reveals that the presence of Ni may undesirably accelerate capacity fading. Using a powerful combination of state‐of‐the‐art analytical techniques in combination with the density functional theory calculations, fundamental mechanisms responsible for such a behavior are uncovered. The unique insights reported in this study highlight the importance of careful selection of metals and electrolytes for optimizing electrochemical properties of metal fluoride cathodes.  相似文献   
133.
We report direct optical observation of cavitation bubbles in liquid helium, both in classical viscous He I and in superfluid He II, close to the \(\lambda \)-transition. Heterogenous cavitation due to the fast-flowing liquid over the rough surface of prongs of a quartz tuning fork oscillating at its fundamental resonant frequency of \(4\,\mathrm {kHz}\) occurs in the form of a cluster of small bubbles rapidly changing its size and position. In accord with previous investigators, we find the cavitation threshold lower in He I than in He II. In He I, the detached bubbles last longer than one camera frame (10 ms), while in He II the cavitation bubbles do not tear off from the surface of the fork up to the highest attainable drive.  相似文献   
134.
This paper proposes the solution of tasks set required for autonomous robotic group behavior optimization during the mission on a distributed area in a cluttered hazardous terrain.The navigation scheme uses the benefits of the original real-time technical vision system(TVS)based on a dynamic triangulation principle.The method uses TVS output data with fuzzy logic rules processing for resolution stabilization.Based on previous researches,the dynamic communication network model is modified to implement the propagation of information with a feedback method for more stable data exchange inside the robotic group.According to the comparative analysis of approximation methods,in this paper authors are proposing to use two-steps post-processing path planning aiming to get a smooth and energy-saving trajectory.The article provides a wide range of studies and computational experiment results for different scenarios for evaluation of common cloud point influence on robotic motion planning.  相似文献   
135.
Integration of crystalline oxides with silicon provides a versatile platform to extend and advance silicon technology. The interface between oxide and Si controls the structure and functional properties of the resulting material. In particular, the formation of a submonolayer metal phase on silicon is the standard approach to stabilize the epitaxial growth of oxides. However, fundamental questions—a) whether the interface transforms in the process of the synthesis; and b) if it is possible to control the interface and its electronic structure by varying the submonolayer template—remain unanswered. The present study employs MBE synthesis of EuO and SrO on Si(001) to demonstrate that the structure of the oxide/Si interface does not depend on the type of the template, its symmetry, and stoichiometry. Chemical transformations of the templates converging into the same 2D product are detected in situ by electron diffraction. Then, the common interfacial structure of 1D periodicity is visualized by high-resolution electron microscopy. The study provides insights into the process of oxide integration with silicon but also sets the limits in designing oxide/Si interfaces.  相似文献   
136.
Integration of oxides with silicon fuses advanced functional properties with a mature technological platform. In particular, direct EuO/Si contact holds high promise for spintronics but requires single-crystalline epitaxial films with atomically sharp interfaces. The standard approach employing regular 2D superstructures of metal atoms on the Si surface fails to meet the challenge. Here, an alternative route is designed and shown to solve the problem. This route avoids regular templates; the chaotic 2D distribution of metal atoms on the Si surface prevents stabilization of unwanted crystal orientations. Thus, the disordered submonolayer phase at the interface promotes order in oxide/Si coupling, as witnessed by a combination of diffraction techniques and high-resolution electron microscopy. The results not only mark tangible progress in manufacturing EuO/Si contacts but also provide a general framework for monolithic integration of functional oxides with semiconductor substrates.  相似文献   
137.
Matrix factorization has proven to be one of the most accurate recommendation approaches. However, it faces one major shortcoming: the latent features that result from the factorization are not directly interpretable. Providing interpretation for these features is important not only to help explain the recommendations presented to users, but also to understand the underlying relations between the users and the items. This paper consists of 2 contributions. First, we propose to automatically interpret features as users, referred to as representative users. This interpretation relies on the study of the matrices that result from the factorization and on their link with the original rating matrix. Such an interpretation is not only performed automatically, as it does not require any human expertise, but it also helps to explain the recommendations. The second proposition of this paper is to exploit this interpretation to alleviate the content-less new item cold-start problem. The experiments conducted on several benchmark datasets confirm that the features discovered by a Non-Negative Matrix Factorization can be interpreted as users and that representative users are a reliable source of information that allows to accurately estimate ratings on new items. They are thus a promising way to solve the new item cold-start problem.  相似文献   
138.
139.
In this paper a new power efficient routing algorithm for MANETs with self-organizing and self-routing features is described and its performance analyzed in different simulation scenarios. The algorithm has the logic of a non-cooperative routing algorithm based on the evaluation of a weight parameter, the latter being a function of properties of the MANET nodes related to the nominal available power and the transmission range. A self-estimation of this weight parameter for each node is introduced in the routing process based on the status and functional history of the node. The routing is based on network layering, formation of service areas in each layer and choice of nodes from these areas to have the functionality of default gateways. The proposed algorithm, named service zone gateway prediction (SZGP), is a hybrid type of routing mechanism, incorporating pre-computed multipath hop-by-hop distributed routing, with a periodically updated hierarchical multilayered structure. The results from the simulation experiments show that the performance of the proposed SZGP algorithm in relation to the basic performance parameters such as packet delivery ratio, delay and throughput are similar to those of the well-known AODV algorithm, but in relation to power efficiency the proposed algorithm outperforms AODV significantly. This is due to the fact that such an approach reduces the overall number of broadcasts in the network and ensures a reliable and energy efficient connection by balancing the load among the nodes.  相似文献   
140.
Vibrational dephasing of the lowest energy electronic excitations in the perfect (16,16) graphene nanoribbon (GNR) and those with the C2-bond insertion and rotation defects is studied with ab initio molecular dynamics. Compared to single-walled carbon nanotubes (SWCNTs) of similar size, GNRs shows very different properties. The dephasing in the ideal GNR occurs twice faster than that in the SWCNTs. It is induced primarily by the 1300 cm (-1) disorder mode seen in bulk graphite rather than by the 1600 cm (-1) C-C stretching mode as in SWCNTs. In contrast to SWCNTs, defects exhibit weaker electron-phonon coupling compared to the ideal system. Therefore, defects should present much less of a practical problem in GNRs compared to SWCNTs. The predicted optical line widths can be tested experimentally.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号