首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   258篇
  免费   6篇
电工技术   6篇
综合类   3篇
化学工业   53篇
金属工艺   3篇
机械仪表   24篇
建筑科学   6篇
矿业工程   1篇
能源动力   10篇
轻工业   21篇
水利工程   3篇
石油天然气   2篇
无线电   9篇
一般工业技术   68篇
冶金工业   15篇
原子能技术   1篇
自动化技术   39篇
  2024年   4篇
  2023年   2篇
  2022年   3篇
  2021年   8篇
  2020年   6篇
  2019年   8篇
  2018年   8篇
  2017年   16篇
  2016年   13篇
  2015年   9篇
  2014年   17篇
  2013年   24篇
  2012年   19篇
  2011年   16篇
  2010年   14篇
  2009年   11篇
  2008年   9篇
  2007年   19篇
  2006年   5篇
  2005年   12篇
  2004年   4篇
  2003年   7篇
  2001年   3篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   4篇
  1991年   2篇
  1985年   4篇
  1983年   6篇
  1980年   1篇
排序方式: 共有264条查询结果,搜索用时 10 毫秒
81.
BACKGROUND: Viscosity–time plots for plasmid‐bearing E. coli cells undergoing alkaline lysis are reported in this study. The plots demonstrate generic features that reflect the progress of fermentation and allow an assessment of the genomic DNA denaturation following cellular release into the alkaline solution. This rheological analysis could offer useful insights to the state of fermentation or the selection of operational specifications and predictions of the performance of subsequent downstream operations. RESULTS: Studies showed a distinct change in the rheological profile throughout the batch fermentation, with different viscosity versus time profiles for lag, exponential and stationary microbial growth phases. The DNA denaturation time was found to increase with fermentation time from about 120 s after 3 h of fermentation to about 180 s after 7 h of fermentation. CONCLUSION: The increase of denaturation time was mainly caused by a rise in the genomic content of cells during the exponential growth phase. The viscosity–time profiles were found to provide a good indication of the cellular contents, reflecting the physiological changes occurring during a batch fermentation process. Copyright © 2009 Society of Chemical Industry  相似文献   
82.
Radioactive pollutants which are released into the atmosphere are known to present a hazard to human health; therefore they must be identified and well protected. Here, an improved remote sensing system is investigated for monitoring radioactive plumes released into the atmosphere from nuclear sites. It is based on the combination of DIAL technique with a phoswich detector array. The DIAL, using a tunable UV/Vis laser, measures the concentration of the radionuclide and the plume distance, whereas the phoswich detects characteristic hard X/γ ray emissions. Here, we have shown the ability of a hybrid system for the prompt identification and quantification of the effluents containing the uranium radionuclide, using the parameters of uranium such as absorption cross-section, absorption spectrum and density.  相似文献   
83.
The aim of this study was to verify the effectiveness of the commercially available anti-Listeria phage preparation LISTEXP100 in reducing Listeria monocytogenes on ready-to-eat (RTE) roast beef and cooked turkey in the presence or absence of the chemical antimicrobials potassium lactate (PL) and sodium diacetate (SD). Sliced RTE meat cores at 4 and 10 °C were inoculated with cold-adapted L. monocytogenes to result in a surface contamination level of 103 CFU/cm2. LISTEXTMP100 was applied at 107 PFU/cm2 and samples taken at regular time intervals during the RTE product's shelf life to enumerate viable L. monocytogenes. LISTEXP100 was effective during incubation at 4 °C with initial reductions of L. monocytogenes of 2.1 log10 CFU/cm2 and 1.7 log10 CFU/cm2, respectively, for cooked turkey and roast beef without chemical antimicrobials (there was no significant difference to the initial L. monocytogenes reductions in the presence of LISTEXTMP100 for cooked turkey containing PL and roast beef containing SD-PL). In the samples containing no chemical antimicrobials, the presence of phage resulted in lower L. monocytogenes numbers, relative to the untreated control, of about 2 log CFU/cm2 over a 28-day storage period at 4 °C. An initial L. monocytogenes cell reduction of 1.5 log10 CFU/cm2 and 1.7 log10 CFU/cm2, respectively, for cooked turkey and roast beef containing no chemical antimicrobials was achieved by the phage at 10 °C (abusive temperature). At this temperature, the L. monocytogenes cell numbers of samples treated with LISTEX™ P100 remained below those of the untreated control only during the first 14 days of the experiment for roast beef samples with and without antimicrobials. On day 28, the L. monocytogenes numbers on samples containing chemical antimicrobials and treated with LISTEXTMP100 stored at 4 and 10 °C were 4.5 log10 CFU/cm2 and 7.5 log10 CFU/cm2, respectively, for cooked turkey, and 1.2 log10 CFU/cm2 and 7.2 log10 CFU/cm2, respectively, for roast beef. In both cooked turkey samples with and without chemical antimicrobials stored at 10 °C, the phage-treated samples had significantly lower numbers of L. monocytogenes when compared to the untreated controls throughout the 28-day storage period (P < 0.0001). For roast beef and cooked turkey containing chemical antimicrobials treated with LISTEXTMP100 and stored at 4 °C, no more than a 2 log CFU/cm2 increase of L. monocytogenes was observed throughout the stated shelf life of the product. This study shows that LISTEXP100 causes an initial reduction of L. monocytogenes numbers and can serve as an additional hurdle to enhance the safety of RTE meats when used in combination with chemical antimicrobials.  相似文献   
84.
A very simple and economic method for organophosphorus pesticides (OPPs) residues analysis in tomato by means of gas chromatography–flame photometric detection (GC–FPD) has been developed. The method involves a rapid and small-scale extraction. The sample was homogenised and extraction of the OPPs with acetone was carried out assisted by sonication. No clean-up or evaporation were required after extraction. Pre-concentration of the OPPs from the acetone extract was done by using dispersive liquid–liquid microextraction (DLLME) technique. Chlorobenzene was added in micro-level volume as extraction solvent and triphenylphosphate as internal standard in DLLME procedure. The method showed good linearity over the range assayed (0.5–1000 μg kg−1) and the detection limits for the pesticides studied varied from 0.1 to 0.5 μg kg−1. Repeatability studies resulted a relative standard deviation lower than 10% in all cases. The proposed method was used to determine pesticides levels in tomatoes grown in open field.  相似文献   
85.
    
BACKGROUND: We evaluated glycaemic response of a brown rice variant (BR) developed by cross‐breeding. Subjects (n = 9) consumed 50 g carbohydrate equivalents of BR, white rice (WR) and the polished brown rice (PR) in comparison to 50 g glucose reference (GLU) in a cross‐over design. Plasma glucose and insulin at 0, 15, 45, 60, 90, 120 and 180 min were measured and incremental area under the curve (IAUC) and indices for glucose (GI) and insulin (II) calculated. RESULTS: BR compared to PR or WR produced the lowest postprandial glycaemia (GI: 51 vs 79 vs 86) and insulinaemia (II: 39 vs 63 vs 68) irrespective of amylose content (19 vs 23 vs 26.5%). Only BR was significantly different from GLU for both plasma glucose (P = 0.012) and insulin (P = 0.013) as well as IAUCglu (P = 0.045) and IAUCins (P = 0.031). Glycaemic and insulinaemic responses correlated positively (r = 0.550, P < 0.001). Linear trends for IAUCglu and IAUCins indicated a greater secretion of insulin tied in with a greater glycaemic response for WR (r2 = 0.848), moderate for PR (r2 = 0.302) and weakest for BR (r2 = 0.122). CONCLUSION: The brown rice variant had the lowest GI and II values but these advantages were lost with polishing. Copyright © 2011 Society of Chemical Industry  相似文献   
86.
    
Challenges facing the scaling of microelectronics to sub-50 nm dimensions and the demanding material and structural requirements of integrated photonic and microelectromechanical systems suggest that alternative fabrication technologies are needed to produce nano-scale devices. Inspired by complex, functional, self-assembled structures and systems found in Nature we suggest that self-assembly can be employed as an effective tool for nanofabrication. We define a self-assembling system as one in which the elements of the system interact in pre-defined ways to spontaneously generate a higher order structure. Self-assembly is a parallel fabrication process that, at the molecular level, can generate three-dimensional structures with sub-nanometer precision. Guiding the process of self-assembly by external forces and geometrical constraints can reconfigure a system dynamically on demand. We survey some of the recent applications of self-assembly for nanofabrication of electronic and photonic devices. Five self-assembling systems are discussed: 1) self-assembled molecular monolayers; 2) self-assembly in supramolecular chemistry; 3) self-assembly of nanocrystals and nanowires; 4) self-assembly of phase-separated block copolymers; 5) colloidal self-assembly. These techniques can generate features ranging in size from a few angstroms to a few microns. We conclude with a discussion of the limitations and challenges facing self-assembly and some potential directions along which the development of self-assembly as a nanofabrication technology may proceed.  相似文献   
87.
For the first time, pristine graphene can be controllably crumpled and unfolded. The mechanism for graphene is radically different than that observed for graphene oxide; a multifaced crumpled, dimpled particle morphology is seen for pristine graphene in contrast to the wrinkled, compressed surface of graphene oxide particles, showing that surface chemistry dictates nanosheet interactions during the crumpling process. The process demonstrated here utilizes a spray‐drying technique to produce droplets of aqueous graphene dispersions and induce crumpling through rapid droplet evaporation. For the first time, the gradual dimensional transition of 2D graphene nanosheets to a 3D crumpled morphology in droplets is directly observed; this is imaged by a novel sample collection device inside the spray dryer itself. The degree of folding can be tailored by altering the capillary forces on the dispersed sheets during evaporation. It is also shown that the morphology of redispersed crumpled graphene powder can be controlled by solvent selection. This process is scalable, with the ability to rapidly process graphene dispersions into powders suitable for a variety of engineering applications.  相似文献   
88.
The purpose of this study is to improve the ductility of pumice lightweight aggregate concrete by incorporating hybrid steel and polypropylene fibers. The changes in mechanical properties and also bulk density and workability of pumice lightweight aggregate concrete due to the addition of hybrid steel and polypropylene fibers have been studied. The properties were investigated include bulk density and workability of fresh concrete as well as compressive strength, flexural tensile strength, splitting tensile strength and toughness of hardened concrete. Nine concrete mixtures with different volume fractions of steel and polypropylene fibers were tested. A large increase in compressive and flexural ductility and energy absorption capacity due to the addition of steel fibers was observed. Polypropylene fibers, on the other hand, caused a minor change in mechanical properties of hardened concrete especially in the mixtures made with both steel and polypropylene fibers. These observations provide insight into the benefits of different fiber reinforcement systems to the mechanical performance of pumice lightweight aggregate concrete which is considered to be brittle. These results provide guidance for design of concrete materials with reduced density and enhanced ductility for different applications, including construction of high-rise, earthquake-resistant buildings.  相似文献   
89.
    
Rhizomania is one of the most destructive and damaging sugar beet diseases that has spread in different regions of Iran. In order to evaluate the genotypic, environmental, and genotype by environmental variability of sugar beet genotypes under rhizomania infection, variance components were estimated from the trial series in 7 years. Required data, such as yield and quality parameters, were collected from value for cultivation and use trials. Results of analysis of variance showed that the environment was the source that explained most of the variability, except for amino-N and alkalinity. Quality traits were also influenced by the environment × cultivar interaction, so that 4.8% (white sugar content) to 46.1% (alkalinity) variance was observed. In contrast, genetic variation was much lower, between 1.2% (potassium) and 27.4% (amino-N). A strong and negative correlation was found between root yield, sugar yield, and white sugar content with the disease index, which obviously illustrates the negative impact of the rhizomania on root weight and as a consequence on the dependent traits. The cluster analysis of the cultivars based on the quantitative and qualitative traits and the disease index showed that the range of variation in traits, such as the disease index, varied from 6.25 for the susceptible cultivar to 1.25 for the resistant one. This indicates the existence of sufficient genetic diversity among cultivars in terms of this trait. High impurity accumulation was observed in Shiraz region compared with Mashhad. In conclusion, it is observed that rhizomania has a significant effect on the impurity concentration in the root, especially sodium, potassium, and amino-N. This is very important in the sugar industry because sugar extraction depends on the concentration of these impurities, in addition to the sugar content of each cultivar.  相似文献   
90.
    
While facial coverings reduce the spread of SARS-CoV-2 by viral filtration, masks capable of viral inactivation by heating can provide a complementary method to limit transmission. Inspired by reverse-flow chemical reactors, we introduce a new virucidal face mask concept driven by the oscillatory flow of human breath. The governing heat and mass transport equations are solved to evaluate virus and CO2 transport. Given limits imposed by the kinetics of SARS-CoV-2 thermal inactivation, human breath, safety, and comfort, heated masks may inactivate SARS-CoV-2 to medical-grade sterility. We detail one design, with a volume of 300 ml at 90°C that achieves a 3-log reduction in viral load with minimal impedance within the mask mesh, with partition coefficient around 2. This is the first quantitative analysis of virucidal thermal inactivation within a protective face mask, and addresses a pressing need for new approaches for personal protective equipment during a global pandemic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号