首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1453篇
  免费   62篇
  国内免费   12篇
电工技术   23篇
化学工业   368篇
金属工艺   28篇
机械仪表   50篇
建筑科学   28篇
矿业工程   1篇
能源动力   113篇
轻工业   91篇
水利工程   11篇
石油天然气   9篇
无线电   167篇
一般工业技术   372篇
冶金工业   56篇
原子能技术   13篇
自动化技术   197篇
  2024年   6篇
  2023年   24篇
  2022年   84篇
  2021年   72篇
  2020年   72篇
  2019年   48篇
  2018年   88篇
  2017年   68篇
  2016年   46篇
  2015年   40篇
  2014年   84篇
  2013年   141篇
  2012年   75篇
  2011年   106篇
  2010年   72篇
  2009年   79篇
  2008年   75篇
  2007年   60篇
  2006年   45篇
  2005年   51篇
  2004年   41篇
  2003年   16篇
  2002年   26篇
  2001年   19篇
  2000年   10篇
  1999年   7篇
  1998年   12篇
  1997年   11篇
  1996年   5篇
  1995年   8篇
  1994年   10篇
  1993年   1篇
  1992年   6篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   3篇
  1985年   3篇
  1984年   1篇
  1981年   3篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1972年   1篇
排序方式: 共有1527条查询结果,搜索用时 15 毫秒
51.
The epoxy ring opening and vicinal diacylation of fatty acids in vegetable oils was found to be promising reaction to synthesize stable biolubricants and bioplasticizers. The current research investigation is emphasized on the synthesis of a value added product vicinally diacylated canola oil by sulfated‐ZrO2. The two‐step research approach employed includes: (i) epoxidation, and (ii) epoxy ring opening and vicinal diacylation of epoxidized triglycerides in the canola oil. Sulfated‐ZrO2 was prepared and characterized to measure the physico‐chemical properties required for the effective catalysis. The Taguchi (L16 orthogonal array) statistical design method was employed to optimize the process conditions for the maximum formation of diacylated canola oil. Sulfated‐ZrO2 demonstrated promising activity for the epoxy ring opening and vicinal diacylation of canola oil, and 99 % conversion was achieved at the optimum process conditions of temperature 130 °C, epoxy to acetic anhydride molar ratio (1:1.25), 16 wt% of catalyst loading and reaction time of 1 h which were inferred from the Taguchi analyses. The products were characterized and confirmed with FT‐IR, 1H NMR and sodium spray mass spectroscopy. Spectroscopic analysis also confirmed the absence of intermediate products. The statistical analyses was undertaken to determine the order, rank and interactions among the process variables. The reaction followed Langmuir–Hinshelwood–Hougen–Watson type mechanism and the kinetic data was fitted in overall second order equation. Calculated apparent activation energy was 23.1 kcal/mol.  相似文献   
52.
A three‐phase water‐soluble nanocomposite of single wall carbon nanotube/silver nanoparticle hybrid fibers embedded in sulfonated polyaniline has been synthesized by a simple chemical solution mixing process. The nanocomposite has been characterized by high resolution electron microscopy, X‐ray diffractometry, FTIR spectroscopy, Raman spectroscopy, and thermogravimetric analysis. Optical and electrical characteristics of the nanocomposite have been determined by UV–vis absorption spectroscopy, photoluminescence spectroscopy, and four‐probe electrical conductivity measurement. A surface plasmon absorption band obtained around 460 nm indicates the presence of silver nanoparticles in the composite. The optical band gap calculation for sulfonated polyaniline vis‐a‐vis the nanocomposite supported the conductivity measurement. Over 1300 times increase in DC electrical conductivity has been observed for the three‐phase nanocomposite, with a filler loading of 20 wt %, at 306 K. This observation could be explained by Mott's variable range hopping model considering a three‐dimensional conduction. Such a nanocomposite has immense potential for use as a cathode material in lithium‐ion batteries and supercapacitors. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41692.  相似文献   
53.
A novel polymer bearing coumarin pendants of 4‐allyloxy‐2H‐chromen‐2‐one (ACO) was synthesized by atom transfer radical polymerization (ATRP) in toluene at 110°C using 2‐Bromoisobutyryl bromide (BIBB), Cu (I) Br, and 2,2′‐bipyridyl (bpy) as initiator, catalyst, and ligand, respectively. The most appropriate molar concentration ratio of [ACO] : [BIBB] : [Cu (I) Br] : [bpy] was found to be 40 : 1 : 1 : 2 for controlled polymerization. Successful chain extension polymerization of poly (4‐allyloxy‐2H‐chromen‐2‐one) (PACO) confirms the livingness of the process. The activation energy (Ea) (76.26 kJ mol?1) and enthalpy of activation (ΔH?) (73.07 kJ mol?1) were in good agreement to each other proving the feasibility of the reaction and negative value of entropy of activation (ΔS?) (?320 J mol?1 K?1) supported the highly restricted movement of reacting species in transition state during polymerization. Initial polymer decomposition temperature of PACO was found to be 130°C. SEM analysis revealed that polymer surface is not smooth with pointed rod like shapes. The polymer/Ag nanocomposite was synthesized and examined in view of antibacterial effect against Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Proteus mirabilis, and Klebsiella pneumonae. PACO and its Ag nanocomposite (PACON) have been found to be active selectively against bacterial pathogen E. fecalis with minimum inhibitory concentration of 50 and 32 μg mL?1, respectively. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   
54.
Biocompatible Polysulfone (PSf) hemodialysis membranes were prepared by phase inversion technique using poly (ether-imide) (PEI) as the modification agent and Polyethylene glycol (PEG-200) as the pore former. The effect of PSf/PEI blend ratio on the morphology, hydrophilicity, water content, porosity, glass transition temperature, mechanical strength, biocompatibility and permeation rate of the prepared membranes were studied and were found to be improved significantly by the incorporation of PEI in the dope solution. The scanning electron microscopy (SEM) studies revealed that, incorporation of PEI resulted in the formation of spongy sub-layer and increased the connectivity of pores between sub-layer and bottom layer. The water content and permeation rate of the membranes of PSf/PEI blend membranes were increased considerably indicating the enhancement of hydrophilicity and it was supported by lower contact angle values of the blend membranes. The existence of single well defined Tg over entire composition established the compatibility between the components in blend membranes. The biocompatibility of membranes was investigated through protein adsorption, platelet adhesion and thrombus formation on the membrane surface. Anticoagulant activity of PSf/PEI blend membranes was evaluated by measuring the activated partial thrombin time (APTT), prothrombin time (PT), thrombin time (TT) and fibrinogen time (FT). The results revealed that antithrombogenicity of PSf/PEI blend membranes was increased significantly. The efficiency of these membranes in removal of urea, creatinine and vitamin B12 were studied and found to be improved for blend membranes. Thus, it is worth mentioning to note that, the biocompatible PSf/PEI blend membranes prepared in this study would offer immense potential in hemodialysis.  相似文献   
55.
Polymer hybridization technique, consisting of an interlayer arrangement of different polymers, acts as the most economical and promising technique in augmenting the glass fiber-reinforced polymer composite's mechanical properties. This investigation focuses on the effect of cure kinetics on the flexural behavior of glass-polymer hybrid (GPH) composite, and also elucidates the comparative analysis on the mechanical behavior of glass-epoxy (GE) composite, glass-vinyl ester (GVE) composite, and GPH composite. The optimal postcuring temperature has been found to be 200°C for GPH composite among the other postcuring temperatures conducted at 140, 170, and 230°C. Among all these abovementioned composites, highest flexural strength and interlaminar shear strength properties have been recorded by the 200°C postcured GPH composite leading to 10.87 and 18.76% increment, respectively, compared with GE composite. Furthermore, thermomechanical characterization has been done to know the viscoelastic behavior of the GPH composite postcured at different temperatures using dynamic mechanical thermal analysis. The fracture morphology of flexural tested composite samples demonstrated a combination of failure modes. Relevant information on the chemical restructuring and fracture morphology of experimented composite material using Fourier-transform infrared (FTIR) spectroscopy and Scanning electron microscopy (SEM) has also been studied.  相似文献   
56.
In the recent sub-20 nm technology node, the process variability issues have become a major problem for scaling of MOS devices. We present a design for a strained Si/SiGe FinFET on an insulator using a 3D TCAD simulator. The impact of metal gate work function variability (WFV) on electrical parameters is studied. Such impact of WFV for different mole fractions (x) of the SiGe layer in a strained SOI-FinFET with varying grain size is presented. The results show that as the mole fraction is increased, the variability in threshold voltage (σVT) and off current (σIoff) is decreased; while, the variability of on-current (σIon) is increased. A notable observation is the distribution of electrical parameters approaches a normal distribution for smaller grain sizes.  相似文献   
57.
ABSTRACT

Solvent extraction studies were performed to understand the extraction behavior of Np4+ and NpO2 2+ from acidic feeds with CMPO (octyl (phenyl)-N,N-diisobutyl carbamoyl methyl phosphine oxide) dissolved in 1-butyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide, a water immiscible ionic liquid. Slope analyses on the distribution data revealed the extraction of ML2 type species, where M = Np4+ or NpO2 2+, and L = CMPO. Studies were also carried out with Pu4+ and UO2 2+ under identical conditions. The nature of the extracted species was found to vary with the nature of the ionic species.  相似文献   
58.
Partially hydrolyzed ethyl silicate has widely been used as a binder to formulate inorganic zinc silicate paint for anticorrosive coating applications. Hydrochloric acid is used most popularly to catalyze the hydrolysis of ethyl silicate. Although different acids have been tried as catalysts for ethyl silicate hydrolysis, no attempt has been made to make stable paints out of those hydrolyzed silicate binders. In this study, environment benign biodegradable organic acids such as oxalic acid, citric acid, lactic acid and acetic acid were used for the hydrolysis of ethyl silicate and compared with the hydrolysis using conventional hydrochloric acid. The hydrolyzed silicate sols were pigmented further with silica powder and evaluated for their stability. Of the various organic acids catalyst used, only oxalic acid catalyzed sol acted as a stable binder system. The pigmented binder was then mixed with metallic zinc to formulate anticorrosive inorganic zinc silicate paint. The resultant coatings were characterized for various physical, surface, mechanical and chemical resistance properties such as drying, hardness, adhesion (cross hatch) and solvent resistance. Corrosion resistance properties were analyzed by means of salt spray, open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS). The results revealed that the physical, mechanical, chemical and anticorrosive properties of the coating hydrolyzed with hydrochloric acid and oxalic acid are comparable. Thus, a chloride free biodegradable organic acid hydrolyzed inorganic zinc silicate primer is reported and due to its long term stability same also can be scaled up commercially.  相似文献   
59.
The decomposition kinetics of poly(vinyl butyral) binder from barium titanate multilayer ceramic capacitors with platinum metal electrodes were analyzed by thermogravimetric analysis as a function of the heating rate. The activation energy and pre-exponential factor for the decomposition kinetics were determined from two types of integral equations, from the Redhead method, and from the variation in heating rate method. The accuracy of the kinetic parameters determined from these methods was then evaluated for describing the observed rate of binder decomposition. Although the individual models yielded very different kinetic parameters, all were capable of describing the experimental data within ±15% accuracy. The kinetic parameters were then used in a coupled transport and kinetic model for describing the buildup of pressure within the ceramic green body as a function of the heating cycle. A methodology based on calculus of variations was also developed to predict the minimum duration for the binder burnout cycle.  相似文献   
60.
The applicability of palladium for the separation of hydrogen isotopes (hydrogen and deuterium) is evaluated systematically by generating isotherm data and conducting column experiments in a laboratory set-up. Effect of various parameters such as concentration of the isotopic mixture, particle size, eluent flow rate, etc. is studied experimentally. A fixed-bed chromatographic model is developed and validated using the experimental data. The model is further used to predict the performance of a multi-column configuration for large-scale separation. Chromatographic separation is thus found to be a promising technique to achieve the required purity and hence it may be clubbed with the existing systems (e.g. cryogenic distillation) to obtain enhanced performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号