首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   1篇
  国内免费   1篇
电工技术   1篇
化学工业   6篇
金属工艺   2篇
能源动力   4篇
轻工业   1篇
无线电   6篇
一般工业技术   3篇
冶金工业   4篇
自动化技术   7篇
  2023年   3篇
  2022年   5篇
  2021年   7篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  2003年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
11.
This paper evaluates the effectiveness of p‐doping transparent single‐walled carbon nanotube (SWNT) films via chemical treatment with HNO3 and SOCl2. Stability of the improvement in electrical conductivity after doping is investigated for different doping treatments as a function of exposure time to air and as a function of temperature. Doped films were found to have a greater than twofold increase in conductivity with sheet resistance values as low as 105 Ω sq?1 with an optical transmittance of 80% at 550 nm. However, doping enhancements demonstrated limited stability in air and under thermal loading. The application of a thin capping layer of PEDOT/PSS is shown to stabilize the improvements in conductivity, evidenced by sustained lower sheet resistance in both air and under thermal loading.  相似文献   
12.
Tumor growth and survival requires a particularly effective immunosuppressant tumor microenvironment (TME) to escape destruction by the immune system. While immunosuppressive checkpoint markers like programmed cell death 1 ligand (PD-L1) are already being targeted in clinical practice, lymphocyte-activation-protein 3 (LAG-3), T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) and V-domain Ig suppressor of T cell activation (VISTA) inhibitors are currently under investigation in clinical trials. Reliable findings on the expression status of those immune checkpoint inhibitors on tumor-infiltrating lymphocytes (TILs) in the TME of oropharyngeal squamous cell carcinoma (OPSCC) are lacking. This work aims to describe the expression of LAG-3, TIM-3, and VISTA expression in the TME of OPSCC. We created a tissue microarray of paraffin-embedded tumor tissue of 241 OPSCC. Expression of the immune checkpoint protein LAG-3, TIM-3, and VISTA in OPSCC was evaluated using immunohistochemistry and results were correlated with CD8+ T-cell inflammation and human papillomavirus (HPV)-status. 73 OPSCC stained positive for LAG-3 (31%; HPV+:44%; HPV-:26%, p = 0.006), 122 OPSCC stained positive for TIM-3 (51%; HPV+:70%; HPV-:44%, p < 0.001) and 168 OPSCC (70%; HPV+:75%; HPV-:68%, p = 0.313) for VISTA. CD8+ T-cells were significantly associated with LAG-3, TIM-3 and VISTA expression (p < 0.001, p < 0.001, p = 0.007). Immune checkpoint therapy targeting LAG-3, TIM-3, and/or VISTA could be a promising treatment strategy especially in HPV-related OPSCC. Future clinical trials investigating the efficacy of a checkpoint blockade in consideration of LAG-3, TIM-3, and VISTA expression are required.  相似文献   
13.
In this paper, an attempt has been made to develop a two‐axis tracking system for solar parabolic dish concentrator and experimentally evaluated the performance of the tracking system. In this proposed design, the sensor design uses the illumination produced by the convex lens on the apex of a pyramid to align the dish in‐line with the sun. The change in incident angle of the solar rays on the lens surface shifts the area of illumination from the apex of the pyramid towards its faces. Photodiodes placed on the faces of the pyramid are used as the sensitive elements to detect the movement of the sun. The sensor output is fed to a microcontroller‐based system to drive the stepper motor on the basis of the programmed algorithm such that it receives normal incidence of sunlight on the sensor. To evaluate the performance of the proposed system, a conventional available 1‐W photovoltaic (PV) panel is placed at the focal point to measure the short circuit current and open circuit voltage. With respect to the conventional solar PV panel, it is observed that the positioning accuracy of the proposed tracking system enhances the short circuit current of 0.11 A by 86%. Thus, the proposed tracking system can be used in a stand‐alone parabolic dish with concentrating PV module as the focal point for further studies.  相似文献   
14.
The versatility and applicability of thermoresponsive polymeric systems have led to great interest and a multitude of publications. Of particular significance, multifunctional poly(N-isopropylacrylamide) (PNIPAAm) systems based on PNIPAAm copolymerized with various functional comonomers or based on PNIPAAm combined with nanomaterials exhibiting unique properties. These multifunctional PNIPAAm systems have revolutionized several biomedical fields such as controlled drug delivery, tissue engineering, self-healing materials, and beyond (e.g., environmental treatment applications). Here, we review these multifunctional PNIPAAm-based systems with various cofunctionalities, as well as highlight their unique applications. For instance, addition of hydrophilic or hydrophobic comonomers can allow for polymer lower critical solution temperature modification, which is especially helpful for physiological applications. Natural comonomers with desirable functionalities have also drawn significant attention as pressure surmounts to develop greener, more sustainable materials. Typically, these systems also tend to be more biocompatible and biodegradable and can be advantageous for use in biopharmaceutical and environmental applications. PNIPAAm-based polymeric nanocomposites are reviewed as well, where incorporation of inorganic or carbon nanomaterials creates synergistic systems that tend to be more robust and widely applicable than the individual components. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48770.  相似文献   
15.

BaFe12O19 (BaM) was synthesized through the co-precipitation route. Pure phase BaM was formed after calcination of precipitated powder at 900 °C. BaM was sintered at three different temperatures; 1100, 1200, and 1300 °C to study the sintering kinetics by varying the sintering time from 1 to 4 h. Apparent porosity decreased, and bulk density increased with increasing sintering temperature and period. A bulk density of about 4.6 g/cm3 was achieved after sintering at 1300 °C/4 h. The rate-controlling mechanism of BaM densification was the diffusion of oxygen, and the activation energy for the sintering process was 274 kJ/mol. The grain size of BaM increased with rising sintering temperatures. Permittivity increased from about 11 to 17 and the permeability increased from about 10 to 16 with the increase in sintering temperature from 1100 to 1300 °C. Saturation magnetization was also enhanced to about 69 emu/g after sintering at 1300 °C/4 h. Therefore, BaM ferrite synthesized through the co-precipitation route can be effectively used for high-frequency applications after sintering at 1300 °C.

  相似文献   
16.
For better utilization of solar spectrum and complete redox of water for water splitting applications, it is required to have a semiconductor which is photoactive in visible region. In this study, we report theoretical and experimental investigations on morphological and opto-electronic modifications induced in α-Bi2O3 due to Selenium (Se) doping tested for photoelectrochemical (PEC) & photocatalytic properties. Density Functional Theory (DFT) calculations revealed band gap reduction and direct to indirect transitions in Se-doped α-Bi2O3. This reduction in band gap is attributed to hybridization of Se p & Bi s in valence band and Se d & Bi p orbital in conduction band. To support this finding experimentally, we synthesized Se-doped α-Bi2O3 using simple chemical precipitation method and measured its band gap using photoluminescence and UV–Vis spectroscopy. Experimental results also confirmed the reduction in band gap energy and recombination rate of charge carriers as compared to pristine α-Bi2O3 sample. PEC study of Se-doped α-Bi2O3 showed an increased photocurrent density, charge carrier density and lowered impedance, which indicates its efficient solar spectrum utilization and better hydrogen generation efficiency. Photocatalytic measurement also revealed higher rate of dye degradation with Se doped α-Bi2O3.  相似文献   
17.
Abstract

Generic nodal integral method (NIM) based scheme, utilizing nine noded 2D quadratic elements along with four noded 2D linear elements, is developed to solve the fluid flow and heat transfer equations in complex geometries. Non-linear (quadratic) quadrilateral elements are used for discretization of boundary region and linear quadrilateral elements are used for interior region. Lagrange interpolation functions are used to map both type of elements to corresponding square computational elements. The scheme for Neumann and mixed type of boundary conditions are also developed for quadratic elements. C1 type continuity condition is imposed at the interfaces of adjacent elements. Numerical results are compared with analytical solutions for diffusion and advection-diffusion equations. Results for Navier–Stokes equations in curved domain are compared with previously reported experimental as well as numerical results. The comparative study has also been done between presently developed scheme using quadratic and linear elements (referred as scheme-1) and scheme based on complete discretization with linear elements (referred as scheme-2). The comparison shows that both the schemes are of nearly second order accurate while the scheme-1 is more accurate than scheme-2. The results show that the efficient mapping of curved surface with quadratic elements improves the accuracy of NIM schemes.  相似文献   
18.
3D reconstruction of deformable (or non-rigid) scenes from a set of monocular 2D image observations is a long-standing and actively researched area of computer vision and graphics. It is an ill-posed inverse problem, since—without additional prior assumptions—it permits infinitely many solutions leading to accurate projection to the input 2D images. Non-rigid reconstruction is a foundational building block for downstream applications like robotics, AR/VR, or visual content creation. The key advantage of using monocular cameras is their omnipresence and availability to the end users as well as their ease of use compared to more sophisticated camera set-ups such as stereo or multi-view systems. This survey focuses on state-of-the-art methods for dense non-rigid 3D reconstruction of various deformable objects and composite scenes from monocular videos or sets of monocular views. It reviews the fundamentals of 3D reconstruction and deformation modeling from 2D image observations. We then start from general methods—that handle arbitrary scenes and make only a few prior assumptions—and proceed towards techniques making stronger assumptions about the observed objects and types of deformations (e.g. human faces, bodies, hands, and animals). A significant part of this STAR is also devoted to classification and a high-level comparison of the methods, as well as an overview of the datasets for training and evaluation of the discussed techniques. We conclude by discussing open challenges in the field and the social aspects associated with the usage of the reviewed methods.  相似文献   
19.
Isonitriles are delicately poised chemical entities capable of being coaxed to react as nucleophiles or electrophiles. Directing this tunable reactivity with metal and non‐metal catalysts provides rapid access to a large array of complex nitrogenous structures ideally functionalized for medicinal applications. Isonitrile insertion into transition metal complexes has featured in numerous synthetic and mechanistic studies, leading to rapid deployment of isonitriles in numerous catalytic processes, including multicomponent reactions (MCR). Covering the literature from 1990–2014, the present review collates reaction types to highlight reactivity trends and allow catalyst comparison.

  相似文献   

20.
Advances in the separation and functionalization of single walled carbon nanotubes (SWCNT) by their electronic type have enabled the development of ratiometric fluorescent SWCNT sensors for the first time. Herein, single chirality SWCNT are independently functionalized to recognize either nitric oxide (NO), hydrogen peroxide (H2O2), or no analyte (remaining invariant) to create optical sensor responses from the ratio of distinct emission peaks. This ratiometric approach provides a measure of analyte concentration, invariant to the absolute intensity emitted from the sensors and hence, more stable to external noise and detection geometry. Two distinct ratiometric sensors are demonstrated: one version for H2O2, the other for NO, each using 7,6 emission, and each containing an invariant 6,5 emission wavelength. To functionalize these sensors from SWCNT isolated from the gel separation technique, a method for rapid and efficient coating exchange of single chirality sodium dodecyl sulfate‐SWCNT is introduced. As a proof of concept, spatial and temporal patterns of the ratio sensor response to H2O2 and, separately, NO, are monitored in leaves of living plants in real time. This ratiometric optical sensing platform can enable the detection of trace analytes in complex environments such as strongly scattering media and biological tissues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号