首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   518篇
  免费   41篇
电工技术   10篇
综合类   3篇
化学工业   118篇
金属工艺   11篇
机械仪表   27篇
建筑科学   9篇
能源动力   28篇
轻工业   36篇
无线电   121篇
一般工业技术   110篇
冶金工业   34篇
原子能技术   4篇
自动化技术   48篇
  2024年   1篇
  2023年   7篇
  2022年   9篇
  2021年   20篇
  2020年   12篇
  2019年   20篇
  2018年   14篇
  2017年   20篇
  2016年   28篇
  2015年   12篇
  2014年   20篇
  2013年   47篇
  2012年   27篇
  2011年   44篇
  2010年   23篇
  2009年   35篇
  2008年   21篇
  2007年   26篇
  2006年   17篇
  2005年   12篇
  2004年   13篇
  2003年   21篇
  2002年   25篇
  2001年   12篇
  2000年   11篇
  1999年   7篇
  1998年   16篇
  1997年   16篇
  1996年   9篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有559条查询结果,搜索用时 359 毫秒
81.
82.
A nanoparticle system for systemic delivery of therapeutics is described, which incorporates a means of tracking the fate of the nanocarrier and its residual drug payload in vivo by photoluminescence (PL). Porous silicon nanoparticles (PSiNPs) containing the proapoptotic antimicrobial peptide payload, D[KLAKLAK]2, are monitored by measurement of the intrinsic PL intensity and the PL lifetime of the nanoparticles. The PL lifetime of the PSiNPs is on the order of microseconds, substantially longer than the nanosecond lifetimes typically exhibited by conventional fluorescent tags or by autofluorescence from cells and tissues; thus, emission from the nanoparticles is readily discerned in the time‐resolved PL spectrum. It is found that the luminescence lifetime of the PSiNP host decreases as the nanoparticle dissolves in phosphate‐buffered saline solution (37 °C), and this correlates with the extent of release of the peptide payload. The time‐resolved PL measurement allows tracking of the in vivo fate of PSiNPs injected (via tail vein) into mice. Clearance of the nanoparticles through the liver, kidneys, and lungs of the animals is observed. The luminescence lifetime of the PSiNPs decreases with increasing residence time in the mice, providing a measure of half‐life for degradation of the drug nanocarriers.  相似文献   
83.
Although there is ample evidence showing that radiation therapy increases the risk of complications of breast reconstruction, the efficacy of human acellular dermal matrix (CGCryoDerm®) in immediate tissue expander breast reconstruction in the setting of postmastectomy radiation therapy has not been fully elucidated. In this study, we report our institutional experience with pertinent refined surgical technique, and determine whether acellular dermal matrices have a protective effect in this increasingly prevalent clinical setting. Twenty-six patients who underwent immediate two-stage breast reconstruction in the setting of postmastectomy radiation therapy with at least 2 years of follow-up were retrieved. Fifteen patents were reconstructed with ADM, whereas 11 patients were reconstructed without ADM. The occurrence of complications was assessed according to the reconstruction type (with ADM vs without ADM). Furthermore, in patients reconstructed with ADM (n?=?15), immunohistochemistry was performed to analyze the breast capsule with ADM compared with that without ADM in the same patient, according to the expression of alpha-smooth muscle actin (α-SMA). The occurrence of complications was significantly associated with the reconstruction type (with ADM vs. without ADM, p = 0.015). On the basis of the results of α-SMA staining, α-SMA+ myofibroblasts were relatively highly expressed throughout the breast capsule without ADM. On the contrary, α-SMA+ myofibroblasts present at the breast capsule adjacent to the ADM were scarce and irregularly scattered. Use of an acellular dermal matrix may be recommended to patients who are concerned about complications after immediate two-stage breast reconstruction in the setting of postmastectomy radiation therapy.  相似文献   
84.
Race classification is a long-standing challenge in the field of face image analysis. The investigation of salient facial features is an important task to avoid processing all face parts. Face segmentation strongly benefits several face analysis tasks, including ethnicity and race classification. We propose a race-classification algorithm using a prior face segmentation framework. A deep convolutional neural network (DCNN) was used to construct a face segmentation model. For training the DCNN, we label face images according to seven different classes, that is, nose, skin, hair, eyes, brows, back, and mouth. The DCNN model developed in the first phase was used to create segmentation results. The probabilistic classification method is used, and probability maps (PMs) are created for each semantic class. We investigated five salient facial features from among seven that help in race classification. Features are extracted from the PMs of five classes, and a new model is trained based on the DCNN. We assessed the performance of the proposed race classification method on four standard face datasets, reporting superior results compared with previous studies.  相似文献   
85.
An important requirement in a military domain is a highly reliable mobility management method, especially when components of the networks are moving in tactical network environments. To increase reliability, the mobility management technology of the tactical network should be able to reflect the characteristics of the tactical network, such as a limited environment, failure, and hierarchical unit structure. In this paper, we propose a proxy-based hierarchical distributed mobility management scheme, which is highly focused on tactical networks. Considering the characteristics of tactical networks, the proposed scheme is composed of the following: 1) a proxy-based method, 2) a distributed mobility management method that synchronizes a mobility database between entities, and 3) a method of managing mobility by dividing the tactical network into upper and lower layers. Mathematical analysis and modeling and simulation results demonstrate that the method outperforms the existing state-of-the-art method in overcoming entity failure, handover cost, and delay in tactical environments.  相似文献   
86.
Incorporation of defects in metal–organic frameworks (MOFs) offers new opportunities for manipulating their microporosity and functionalities. The so-called “defect engineering” has great potential to tailor the mass transport properties in MOF/polymer mixed matrix membranes (MMMs) for challenging separation applications, for example, CO2 capture. This study first investigates the impact of MOF defects on the membrane properties of the resultant MOF/polymer MMMs for CO2 separation. Highly porous defect-engineered UiO-66 nanoparticles are successfully synthesized and incorporated into a CO2-philic crosslinked poly(ethylene glycol) diacrylate (PEGDA) matrix. A thorough joint experimental/simulation characterization reveals that defect-engineered UiO-66/PEGDA MMMs exhibit nearly identical filler–matrix interfacial properties regardless of the defect concentrations of their parental UiO-66 filler. In addition, non-equilibrium molecular dynamics simulations in tandem with gas transport studies disclose that the defects in MOFs provide the MMMs with ultrafast transport pathways mainly governed by diffusivity selectivity. Ultimately, MMMs containing the most defective UiO-66 show the most enhanced CO2/N2 separation performance—CO2 permeability = 470 Barrer (four times higher than pure PEGDA) and maintains CO2/N2 selectivity = 41—which overcomes the trade-off limitation in pure polymers. The results emphasize that defect engineering in MOFs would mark a new milestone for the future development of optimized MMMs.  相似文献   
87.
88.
Stem cell-based therapy has recently emerged for use in novel therapeutics for incurable diseases. For successful recovery from neurologic diseases, the most pivotal factor is differentiation and directed neuronal cell growth. In this study, we fabricated three different widths of a micro-pattern on polydimethylsiloxane (PDMS; 1, 2, and 4 microm). Surface modification of the PDMS was investigated for its capacity to manage proliferation and differentiation of neural-like cells from umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs). Among the micro-patterned PDMS fabrications, the 1 microm-patterned PDMS significantly increased cell proliferation and most of the cells differentiated into neuronal cells. In addition, the 1 microm-patterned PDMS induced an increase in cytosolic calcium, while the differentiated cells on the flat and 4 microm-patterned PDMS had no response. PDMS with a 1 microm pattern was also aligned to direct orientation within 10 degrees angles. Taken together, micro-patterned PDMS supported UCB-MSC proliferation and induced neural like-cell differentiation. Our data suggest that micro-patterned PDMS might be a guiding method for stem cell therapy that would improve its therapeutic action in neurological diseases.  相似文献   
89.
New indoline dyes ( RK‐1 – 4 ) were designed with a planar geometry and high molar extinction coefficient, which provided surprising power conversion efficiency (PCE) with a thin titanium dioxide film in dye‐sensitized solar cells (DSCs). They had a difference in only alkyl chain length. Despite the same molecular structure, the performance of the respective DSCs varied significantly. Investigating the dye adsorption processes and charge transfer kinetics, the alkyl chain length was determined to affect the dye surface coverage as well as the recombination between the injected photoelectrons and the oxidized redox mediators. When applied to the DSCs as a light harvester, RK‐3 with the dodecyl group exhibited the best photocurrent density, consequently achieving the best PCE of 9.1% with a 1.8 μm active and 2.5 μm scattering layer because of the most favorable charge injection. However, when increasing the active layer thickness, overall device performance deteriorated and the charge collection and regeneration played major roles for determining the PCE. Therefore, RK‐2 featuring the highest surface coverage and moderate alkyl chain length obtained the highest PCEs of 8.8% and 7.9% with 3.5 and 5.1 μm active layers, respectively. These results present a promising perspective of organic dye design for thin film DSCs.  相似文献   
90.
This study proposes a subsystem consisting of an analog buffer and a single‐ended input to a fully differential ΔΣ modulator to obtain low‐power consumption for portable electrocardiogram applications. With the proposed subsystem, the need for an inverting amplifier is avoided, and low‐power consumption is achieved. The ΔΣ modulator with a second order, 1 bit, and cascade of integrators feedforward structure consumes a low power, in which an inverting and a non‐inverting path implement a single‐ended input to fully‐differential signals. A double sampling technique is proposed for a digital‐to‐analog converter feedback circuit to reduce the effect of the reference voltage, reduce the amplifier requirements, and obtain low‐power consumption. Input‐bias and output‐bias transistors working in the weak‐inversion region are implemented to obtain an extremely large swing for the analog buffer. At a supply voltage of 1.2 V, signal bandwidth of 250 Hz, and sampling frequency of 128 kHz, the measurement results show that the modulator with a buffer achieves a 77 dB peak signal‐to‐noise‐distortion ratio, an effective‐number‐of‐bits of 12.5 bits, an 83 dB dynamic range, and a figure‐of‐merit of 156 dB. The total chip size is approximately 0.28 mm2 with a standard 0.13 µm Complementary Metal‐Oxide‐Silicon (CMOS) process. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号